
The iterative conception of set

G E O R G E BOOLOS

A set, according to Cantor, is "any collection . . . into a whole of definite,
well-distinguished objects... of our intuition or thought."1 Cantor also
defined a set as a "many, which can be thought of as one, i.e., a totality
of definite elements that can be combined into a whole by a law."2 One
might object to the first definition on the grounds that it uses the con-
cepts of collection and whole, which are notions no better understood
than that of set, that there ought to be sets of objects that are not objects
of our thought, that intuition' is a term laden with a theory of knowl-
edge that no one should believe, that any object is "definite," that there
should be sets of ill-distinguished objects, such as waves and trains, etc.,
etc. And one might object to the second on the grounds that 'a many' is
ungrammatical, that if something is "a many" it should hardly be
thought of as one, that totality is as obscure as set, that it is far from
clear how laws can combine anything into a whole, that there ought to be
other combinations into a whole than those effected by "laws," etc., etc.
But it cannot be denied that Cantor's definitions could be used by a
person to identify and gain some understanding of the sort of object of
which Cantor wished to treat. Moreover, they do suggest - although, it
must be conceded, only very faintly - two important characteristics of
sets: that a set is "determined" by its elements in the sense that sets with
exactly the same elements are identical, and that, in a sense, the clarifica-
tion of which is one of the principal objects of the theory whose rationale
we shall give, the elements of a set are "prior t o " it.

It is not to be presumed that the concepts of set and member o/can be
explained or defined by means of notions that are simpler or conceptu-
ally more basic. However, as a theory about sets might itself provide the
sort of elucidation about sets and membership that good definitions

Reprinted with the kind permission of the author and the editors from the Journal of
Philosophy 68 (1971): 215-32.

^'Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohl-
unterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die
'Elemente' von M genannt werden) zu einem Ganzen" (Cantor 1932: 282).

2" . . . jedes Viele, welches sich als Eines denken lasst, d.h. jeden Inbegriff bestimmter
Elemente, welcher durch ein Gesetz zu einem Ganzen verbunden werden kann" (Cantor
1932: 204).
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might be hoped to offer, there is no reason for such a theory to begin
with, or even contain, a definition of 'set'. That we are unable to give
informative definitions of not or for some does not and should not pre-
vent the development of quantificational logic, which provides us with
significant information about these concepts.

I. Naive set theory

Here is an idea about sets that might occur to us quite naturally, and is
perhaps suggested by Cantor's definition of a set as a totality of definite
elements that can be combined into a whole by a law.

By the law of excluded middle, any (one-place) predicate in any lan-
guage either applies to a given object or does not. So, it would seem, to
any predicate there correspond two sorts of thing: the sort of thing to
which the predicate applies (of which it is true) and the sort of thing to
which it does not apply. So, it would seem, for any predicate there is a set
of all and only those things to which it applies (as well as a set of just
those things to which it does not apply). Any set whose members are
exactly the things to which the predicate applies - by the axiom of exten-
sionality, there cannot be two such sets - is called the extension of the
predicate. Our thought might therefore be put: "Any predicate has an
extension." We shall call this proposition, together with the argument
for it, the naive conception of set.

The argument has great force. How could there not be a collection, or
set, of just those things to which any given predicate applied? Isn't
anything to which a predicate applies similar to all other things to which
it applies in precisely the respect that it applies to them; and how could
there fail to be a set of all things similar to one another in this respect?
Wouldn't it be extremely implausible to say, of any particular predicate
one might consider, that there weren't two kinds of thing it determined,
namely, a kind of thing of which it is true, and a kind of thing of which it
is not true? And why should one not take these kinds of things to be sets?
Aren't kinds sets? If not, what is the difference?

Let us denote by 'JC' a certain standardly formalized first-order lan-
guage, whose variables range over all sets and individuals (= non-sets),
and whose nonlogical constants are a one-place predicate letter 'S"
abbreviating 'is a set', and a two-place predicate letter ' E \ abbreviating
'is a member of . Which sentences of this language, together with their
consequences, do we believe state truths about sets? Otherwise put, which
formulas of JC should we take as axioms of a set theory on the strength of
our beliefs about sets?

If the naive conception of set is correct, there should (at least) be a set
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of just those things to which 0 applies, if 0 is a formula of K. So (the
universal closure of) r(ly)(Sy & (x)(xEy «-> 0))n should express a truth
about sets (if no occurrence of ly9 in </> is free).

We call the theory whose axioms are the axiom of extensionality (to
which we later recur), i.e., the sentence

(x)(y)(Sx&Sy & (z){zex~zey) ~+x=y)

and all formulas r(3y)(Sy & (jt)(x€j> ~ 0))n (where *y9 does not occur
free in </>) naive set theory.

Some of the axioms of naive set theory are the formulas

(iy)(Sy&
(3y)(Sy & (x)(xey ~ (x = zvx=w)))

{iy)(Sy & (x)(xey ~ (3w)(xe w & we*)))
& (*)(xej> - (S* & x=x)))

The first of these formulas states that there is a set that contains no
members. By the axiom of extensionality, there can be at most one such
set. The second states that there is a set whose sole members are z and w;
the third, that there is a set whose members are just the members of
members of z.

The last, which states that there is a set that contains all sets whatso-
ever, is rather anomalous; for if there is a set that contains all sets, a uni-
versal set, that set contains itself, and perhaps the mind ought to bog-
gle at the idea of something's containing itself. Nevertheless, naive set
theory is simple to state, elegant, initially quite credible, and natural in
that it articulates a view about sets that might occur to one quite naturally.

Alas, it is inconsistent.

Proof of the inconsistency of naive set theory
(Russell's paradox)

No set can contain all and only those sets which do not contain them-
selves. For if any such set existed, if it contained itself, then, as it con-
tains only those sets which do not contain themselves, it would not con-
tain itself; but if it did not contain itself, then, as it contains all those sets
which do not contain themselves, it would contain itself. Thus any such
set would have to contain itself if and only if it did not contain itself.
Consequently, there is no set that contains all and only those sets which
do not contain themselves.

This argument, which uses no axioms of naive set theory, or any other
set theory, shows that the sentence
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~ (ly)(Sy & (x){xey ~ (Sx & ~xex)))

is logically valid and, hence, is a theorem of any theory that is expressed
in JC. But one of the axioms and, hence, one of the theorems, of naive set
theory is the sentence

(ly)(Sy & (x)(xey ~ (Sx & ~xex)))

Naive set theory is therefore inconsistent.

II. The iterative conception of set

Faced with the inconsistency of naive set theory, one might come to
believe that any decision to adopt a system of axioms about sets would be
arbitrary in that no explanation could be given why the particular system
adopted had any greater claim to describe what we conceive sets and the
membership relation to be like than some other system, perhaps incom-
patible with the one chosen. One might think that no answer could be
given to the question: why adopt this particular system rather than that
or this other one? One might suppose that any apparently consistent
theory of sets would have to be unnatural in some way or fragmentary,
and that, if consistent, its consistency would be due to certain provisions
that were laid down for the express purpose of avoiding the paradoxes
that show naive set theory inconsistent, but that lack any independent
motivation.

One might imagine all this; but there is another view of sets: the itera-
tive conception of set, as it is sometimes called, which often strikes
people as entirely natural, free from artificiality, not at all ad hoc, and
one they might perhaps have formulated themselves.

It is, perhaps, no more natural a conception than the naive conception,
and certainly not quite so simple to describe. On the other hand, it is, as
far as we know, consistent: not only are the sets whose existence would
lead to contradiction not assumed to exist in the axioms of the theories
that express the iterative conception, but the more than fifty years of
experience that practicing set theorists have had with this conception
have yielded a good understanding of what can and what cannot be
proved in these theories, and at present there just is no suspicion at all
that they are inconsistent.3

3The conception is well known among logicians; a rather different version of it is sketched
in Shoenfield (1967: chap. 10). I learned of it principally from Putnam, Kripke, and
Donald Martin. Authors of set-theory texts either omit it or relegate it to back pages; phi-
losophers, in the main, seem to be unaware of it, or of the preeminence of ZF, which may
be said to embody it. It is due primarily to Zermelo and Russell.
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The standard, first-order theory that expresses the iterative conception
of set as fully as a first-order theory in the language <£ of set theory4 can,
is known as Zermelo-Fraenkel set theory, or 'ZF' for short. There are
other theories besides ZF that embody the iterative conception: one of
them, Zermelo set theory, or " Z " , which will occupy us shortly, is & sub-
system of ZF in the sense that any theorem of Z is also a theorem of ZF;
two others, von-Neumann-Bernays-G6del set theory and Morse-Kelley
set theory, are supersystems (or extensions) of ZF, but they are most
commonly formulated as second-order theories.

Other theories of sets, incompatible with ZF, have been proposed.5

These theories appear to lack a motivation that is independent of the
paradoxes in the following sense: they are not, as Russell has written,
"such as even the cleverest logician would have thought of if he had not
known of the contradictions" (1959: 80). A final and satisfying resolu-
tion to the set-theoretical paradoxes cannot be embodied in a theory that
blocks their derivation by artificial technical restrictions on the set of
axioms that are imposed only because paradox would otherwise ensue;
these other theories survive only through such artificial devices. ZF alone
(together with its extensions and subsystems) is not only a consistent
(apparently) but also an independently motivated theory of sets: there is,
so to speak, a "thought behind it" about the nature of sets which might
have been put forth even if, impossibly, naive set theory had been con-
sistent. The thought, moreover, can be described in a rough, but infor-
mative way without first stating the theory the thought is behind.

In order to see why a conception of set other than the naive conception
might be desired even if the naive conception were consistent, let us take
another look at naive set theory and the anomalousness of its axiom,
'(ly)(Sy & (x)(xey ~ (Sx & *=*)))'.

According to this axiom there is a set that contains all sets, and there-
fore there is a set that contains itself. It is important to realize how odd
the idea of something's containing itself is. Of course a set can and must
include itself (as a subset). But contain itself? Whatever tenuous hold on
the concepts of set and member were given one by Cantor's definitions of
'set' and one's ordinary understanding of 'element', 'set', 'collection',
etc. is altogether lost if one is to suppose that some sets are members of
themselves. The idea is paradoxical not in the sense that it is contra-
dictory to suppose that some set is a member of itself, for, after all,
'(3x)(Sx & xExY is obviously consistent, but that if one understands
' E ' as meaning 'is a member of, it is very, very peculiar to suppose it

4 £ contains (countably many) variables, ranging over (pure) sets, ' = ', and ' 6 ' , which is
its sole nonlogical constant.

5For example, Quine's systems NF and ML.
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true. For when one is told that a set is a collection into a whole of definite
elements of our thought, one thinks: Here are some things. Now we bind
them up into a whole.6 Now we have a set. We don't suppose that what
we come up with after combining some elements into a whole could have
been one of the very things we combined (not, at least, if we are com-
bining two or more elements).

If (lx)(Sx ScxEx), then (3x)(3y)(Sx & Sy & xEy &yex). The sup-
position that there are sets x and y each of which belongs to the other is
almost as strange as the supposition that some set is a self-member.
There is of course an infinite sequence of such cyclical pathologies:
(lx)(ly)(3z)(Sx & Sy & Sz & xey & yez & zex), etc. Only slightly
less pathological are the suppositions that there is an ungrounded set,7 or
that there is an infinite sequence of sets xo,xux2i..., each term of which
belongs to the previous one.

There does not seem to be any argument that is guaranteed to persuade
someone who really does not see the peculiarity of a set's belonging to
itself, or to one of its members, etc., that these states of affairs are pecu-
liar. But it is in part the sense of their oddity that has led set-theorists to
favor conceptions of set, such as the iterative conception, according to
which what they find odd does not occur.

We describe this conception now. Our description will have three
parts. The first is a rough statement of the idea. It contains such expres-
sions as 'stage', 'is formed at', 'earlier than', 'keep on going', which
must be exorcised from any formal theory of sets. From the rough descrip-
tion it sounds as if sets were continually being created, which is not the
case. In the second part, we present an axiomatic theory which partially
formalizes the idea roughly stated in the first part. For reference, let us
call this theory the stage theory. The third part consists in a derivation
from the stage theory of the axioms of a theory of sets. These axioms are
formulas of <£, the language of set theory, and contain none of the meta-
phorical expressions which are employed in the rough statement and of
which abbreviations are found in the language in which the stage theory
is expressed.

Here is the idea, roughly stated:

A set is any collection that is formed at some stage of the following
process: Begin with individuals (if there are any). An individual is an
object that is not a set; individuals do not contain members. At stage
zero (we count from zero instead of one) form all possible collections of

6We put a "lasso" around them, in a figure of Kripke's.
nx is ungrounded if x belongs to some set z, each of whose members has a member in

common with z.
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individuals. If there are no individuals, only one collection, the null set,
which contains no members, is formed at this Oth stage. If there is only
one individual, two sets are formed: the null set and the set containing
just that one individual. If there are two individuals, four sets are formed;
and in general, if there are n individuals, 2n sets are formed. Perhaps
there are infinitely many individuals. Still, we assume that one of the
collections formed at stage zero is the collection of all individuals, how-
ever many of them there may be.

At stage one, form all possible collections of individuals and sets
formed at stage zero. If there are any individuals, at stage one some sets
are formed that contain both individuals and sets formed at stage zero.
Of course some sets are formed that contain only sets formed at stage
zero. At stage two, form all possible collections of individuals, sets
formed at stage zero, and sets formed at stage one. At stage three, form
all possible collections of individuals and sets formed at stages zero, one,
and two. At stage four, form all possible collections of individuals and
sets formed at stages zero, one, two, and three. Keep on going in this
way, at each stage forming all possible collections of individuals and sets
formed at earlier stages.

Immediately after all of stages zero, one, two, three, . . . , there is a
stage; call it stage omega. At stage omega, form all possible collections
of individuals formed at stages zero, one, two, One of these collec-
tions will be the set of all sets formed at stages zero, one, two, —

After stage omega there is a stage omega plus one. At stage omega plus
one form all possible collections of individuals and sets formed at stages
zero, one, two . . . , and omega. At stage omega plus two form all possible
collections of individuals and sets formed at stages zero, one, two, . . . ,
omega, and omega plus one. At stage omega plus three form all possible
collections of individuals and sets formed at earlier stages. Keep on going
in this way.

Immediately after all of stages zero, one, two, . . . , omega, omega plus
one, omega plus two, . . . , there is a stage, call it stage omega plus omega
(or omega times two). At stage omega plus omega form all possible col-
lections of individuals and sets formed at earlier stages. At stage omega
plus omega plus one

. . . omega plus omega plus omega (or omega times three).. .

. . . (omega times four). . .

. . . omega times omega
Keep on going in this way
According to this description, sets are formed over and over again: in

fact, according to it, a set is formed at every stage later than that at which
it is first formed. We could continue to say this if we liked; instead we
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shall say that a set is formed only once, namely, at the earliest stage at
which, on our old way of speaking, it would have been said to be formed.

That is a rough statement of the iterative conception of set. According to
this conception, no set belongs to itself, and hence there is no set of all
sets; for every set is formed at some earliest stage, and has as members
only individuals or sets formed at still earlier stages. Moreover, there are
not two sets x and y, each of which belongs to the other. For if y
belonged to x, y would have had to be formed at an earlier stage than the
earliest stage at which x was formed, and if x belonged to y, x would
have had to be formed at an earlier stage than the earliest stage at which y
was formed. So x would have had to be formed at an earlier stage than
the earliest stage at which it was formed, which is impossible. Similarly,
there are no sets x, yy and z such that x belongs to y, y to z, and z to x.
And in general, there are no sets xo,X\,x2,...,xn such that x0 belongs to
Xi, X\ to x2,... ,*/i-i to xn9 and xn to x0. Furthermore it would appear
that there is no sequence of sets xo,xux2,x3,... such that xx belongs to
JC0, x2 belongs to xu x3 belongs to x2, and so forth. Thus, if sets are as
the iterative conception has them, the anomalous situations do not arise in
which sets belong to themselves or to others that in turn belong to them.

The sets of which ZF in its usual formulation speaks (' 'quantifies over")
are not all the sets there are, if we assume that there are some individuals,
but only those which are formed at some stage under the assumption that
there are no individuals. These sets are called pure sets. All members of a
pure set are pure sets, and any set, all of whose members are pure, is itself
pure. It may not be obvious that any pure sets are ever formed, but the
set A, which contains no members at all, is pure, and is formed at stage 0.
{A} and {[A)) are also both pure and are formed at stages 1 and 2,
respectively. There are many others. From now on, we shall use the word
'set' to mean 'pure set'.

Let us now try to state a theory, the stage theory, that precisely ex-
presses much, but not all, of the content of the iterative conception. We
shall use a language, $, in which there are two sorts of variables: variables
'x\ 'y\ 'z ' , ' w ' , . . . , which range over sets, and variables V , V , 7 ' ,
which range over stages. In addition to the predicate letters ' 6 ' and ' = '
of <£, $ also contains two new two-place predicate letters 'E' , read 'is
earlier than', and ' F \ read 'is formed at'. The rules of formation of $ are
perfectly standard.

Here are some axioms governing the sequence of stages:

(I) (x) ~sEs (No stage is earlier than itself.)
(II) (r)(s)(t)((rEs & sEt) -> rEt) (Earlier than is transitive.)
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(III) (s)(t)(sEtVs = tVtEs) (Earlier than is connected.)
(IV) (3s)(t)(t^s -^sEt) (There is an earliest stage.)
(V) (s)(3t)(sEt& (r)(rEt-> (rEs\/r = s))) (Immediately after

any stage there is another.)

Here are some axioms describing when sets and their members are
formed:

(VI) (3s)((3t)tEs & (t)(tEs-+ (3r)(tEr& rEs))) ( T h e r e is a
stage, not the earliest one, which is not immediately after any
one stage. In the rough description, stage omega was such a
stage.)

(VII) (x)(3s)(x¥s & (t)(x¥t -> t = s)) (Every set is formed at some
unique stage.)

(VIII) (x)(y)(s)(t)((y ex & xFs & y¥t) -^ tEs) (Every member of
a set is formed before, i.e., at an earlier stage than, the set.)

(IX) (x)(s)(t)(x¥s&tEs^> (3y)(3r)(yEx&y¥r& (t = rVtEr)))
(If a set is formed at a stage, then, at or after any earlier stage,
at least one of its members is formed. So it never happens that
all members of a set are formed before some stage, but the set
is not formed at that stage, if it has not been formed already.)

We may capture part of the content of the idea that at any stage
every possible collection (or set) of sets formed at earlier stages is
formed (if it has not yet been formed) by taking as axioms all formulas
r(s)(3y)(x)(xEy ~(x & (3t)(tEs&x¥t))r, where \ is a formula of
the language $ in which no occurrence of 'y' is free. Any such axiom will
say that for any stage there is a set of just those sets to which x applies
that are formed before that stage. Let us call these axioms specification
axioms.

There is still one important feature contained in our rough description
that has not yet been expressed in the stage theory: the analogy between
the way sets are inductively generated by the procedure described in the
rough statement and the way the natural numbers 0,1,2,... are induc-
tively generated from 0 by the repeated application of the successor
operation. One way to characterize this feature is to assert a suitable
induction principle concerning sets and stages; for, as Frege, Dedekind,
Peano, and others have enabled us to see, the content of the idea that
objects of a certain kind are inductively generated in a certain way is just
the proposition than an appropriate induction principle holds of those
objects.

The principle of mathematical induction, the induction principle gov-
erning the natural numbers, has two forms, which are interderivable on
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certain assumptions about the natural numbers. The first version of the
principle is the statement

(P)[(P0& (n)[Pn -+PSn]) -> (n)Pn]

which may be read, 'If 0 has a property and if whenever a natural num-
ber has the property its successor does, then every natural number has
the property'. The second version is the statement

(P)[(n)((m)[m<n -» Pm] -»Pn) -* (n)Pn]

It may be read, 'If each natural number has a property provided that all
smaller natural numbers have it, then every natural number has the
property'.

The induction principle about sets and stages that we should like to
assert is modeled after the second form of the principle of mathematical
induction. Let us say that a stage s is covered by a predicate if the predi-
cate applies to every set formed at s. Our analogue for sets and stages of
the second form of mathematical induction says that / / each stage is
covered by a predicate provided that all earlier stages are covered by it,
then every stage is covered by the predicate. The full force of this asser-
tion can be expressed only with a second-order quantifier. However, we
can capture some of its content by taking as axioms all formulas
r(s)((t)(tEs -> (x)(x¥t -> 6)) -> (x)(x¥s -> x)) -> (s)(x)(xFs -* x ) n

where x is a formula of $ that contains no occurrences of itJ and 6 is just
like x except for containing a free occurrence of 7 ' wherever x contains a
free occurrence of is\ [Observe that i(x)(xFs —> x) ' s a v s that x applies
to every set formed at stage s and, hence, that s is covered by x-] We call
these axioms induction axioms.

III. Zermelo set theory

We complete the description of the iterative conception of set by showing
how to derive the axioms of a theory of sets from the stage theory. The
axioms we derive speak only about sets and membership: they are for-
mulas of <£.

The axiom of the null set: (3y)(x)~xEy. (There is a set with no mem-
bers.)

Derivation. Let \ = 'x = x\ Then

(s)(3y)(x)(xey ~ (x=x & (lt)(tEs &
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is a specification axiom, according to which, for any stage, there is a set
of all sets formed at earlier stages. As there is an earliest stage, stage 0,
before which no sets are formed, there is a set that contains no members.
Note that, by axiom (IX) of the stage theory, any set with no members is
formed at stage 0; for if it were formed later, it would have to have a
member (that was formed at or after stage 0).

The axiom of pairs: (z)(w)(3y)(x)(xEy *-> (x = zVx=w)). (For any
sets z and w, not necessarily distinct, there is a set whose sole members
are z and w.)

Derivation. Let x = '(* = £Vx=w)\ Then

(s)(3y)(x)(xey ~ ((x = zvx=w) & (3t)(tEs & xFt)))

is a specification axiom, according to which, for any stage, there is a set
of all sets formed at earlier stages that are identical with either z or w.
Any set is formed at some stage. Let r be the stage at which z is formed;
5, the stage at which w is formed. Let t be a stage later than both r and s.
Then there is a set of all sets formed at stages earlier than t that are iden-
tical with z or w. So there is a set containing just z and w.

The axiom of unions: (z)(3y)(x)(xey «-» (lw)(xew & wGz)). (For
any set z, there is a set whose members are just the members of members
ofz.)

Derivation. i(s)(3y){x){xey ~ ((3w)(xew&wez)&(3t)(tEs&xFt))Y
is a specification axiom, according to which, for any stage, there is a set
of all members of members of z formed at earlier stages. Let s be the
stage at which z is formed. Every member of z is formed before s, and
hence every member of a member of z is also formed before s. Thus there
is a set of all members of members of z.

The power-set axiom: (z)(ly)(x)(xEy «-» (w)(w€x —> w£z)). (For
any set z, there is a set whose members are just the subsets of z.)

Derivation. i(s){3y)(x)(xey«- ({w)(wex^>wez)&(lt)(tEs&xFt)))'
is a specification axiom, according to which, for any stage, there is a set
of all subsets of z formed at earlier stages. Let t be the stage at which z is
formed and let s be the next later stage. If x is a subset of z, then x is
formed before s. For otherwise, by axiom (IX), there would be a member
of x that was formed at or after t and, hence, that was not a member ofz.
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So there is a set of all subsets of z formed before s, and hence a set of all
subsets of z.

The axiom of infinity:

(3y)((3x)(xEy& (z)~zex)
& (x)(xey -> (iz)(zey & (w)(wez~ (wexvw=x)))))

(Call a set null if it has no members. Call z a successor of x if the mem-
bers of z are just those of x and x itself. Then there is a set which contains
a null set and which contains a successor of any set it contains.)

Derivation. Let us first observe that every set x has a successor. For let y
be a set containing just x and x (axiom of pairs), and let w be a set con-
taining just x and y (axiom of pairs again), and let z contain just the
members of members of w (axiom of unions). Then z is a successor of JC,
for its members are just x and x's members. Next, note that if z is a suc-
cessor of x, x is formed at r, and t is the next stage after A*, then z is
formed at t. For every member of z is formed before t. So z is formed at
or before t, by axiom (IX). But x, which is in z, is formed at r. So z
cannot be formed at or before r. So z cannot be formed before t. Now,
by axiom (VI), there is a stage s, not the earliest one, which is not imme-
diately after any stage. i{s)(3y)(x)(xey «-» (x=x & (3t)(tEs & x¥t)))y

is a specification axiom, according to which, for any stage, there is a set
of all sets formed at earlier stages. So there is a set y of all sets formed
before s. y thus contains all sets formed at stage 0, and hence contains a
null set. And if y contains x, y contains all successors of x (and there are
some), for all these are formed at stages immediately after stages before s
and, hence, at stages themselves before s.

Axioms of separation (Aussonderungsaxioms): All formulas
r(z)(iy)(x)(xey~ (xez&ct>)y

where 0 is a formula of L in which no occurrence of 'j>' is free.

Derivation. If 0 is a formula of <£ in which no occurrence of 'y9 is free,
then r(s)(3y)(x)(xey ~ ((xEz & 0) & (3t)(tEs & x¥t))y is a speci-
fication axiom, which we may read, 'for any stage s, there is a set of all
sets formed at earlier stages, which belong to z and to which 0 applies.
Let s be the stage at which z is formed. All members of z are formed
before s. So, for any z, there is a set of just those members of z to which
0 applies, which we would write, r(z)(3y)(x)(xEy «-» (xEz & 0) ) n . A
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formal derivation of an Aussonderungsaxiom would use the specifica-
tion axiom described and axioms (VII) and (VIII) of the stage theory.

Axioms of regularity: All formulas
r(3x)0 -+ (3x)(0 &

where 0 does not contain *y' at all and \p is just like 0 except for contain-
ing an occurrence of 'y' wherever 0 contains a free occurrence of 'x\

Derivation. The idea: Suppose 0 applies to some set x'. JC' is formed at
some stage. That stage is therefore not covered by r~ 0n . By an induc-
tion axiom, there is then a stage s not covered by r ~ 0 n , although all
stages earlier than s are covered by r ~ 0 n . Since s is not covered by
r ~ 0 n , there is an x, formed at s, to which r ~0 n does not apply, i.e., to
which 0 applies. If y is in x, however, y is formed before s, and hence the
stage at which it is formed is covered by r ~ 0 n . So r ~0 n applies to y
(which is what r~\p says).

For a formal derivation, contrapose, reletter, and simplify the induc-
tion axiom

r(s)((t)(tEs -+ (x)(xFt -* ~0)) -> (x)(xFs -> -0) )

so as to obtain
r(ls)(lx)(xFs& $) ^> (3s)(lx)(xFs& $ & (y)(t)(tEs&yFt -* ~\l/))n

Assume r(3x)0n. Use axiom (VII) and modus ponens to obtain
r(3s)(3x)(xFs & cl> & (y)(t)(tEs&yFt-+ ~i£))n

Use axioms (VII) and (VIII) to obtain r(3;c)(0& (y)(yex^> -W from
this.

The axioms of regularity (partially) express the analogue for sets of the
version of mathematical induction called the least-number principle: if
there is a number that has a property, then there is a least number with
that property. The analogue itself has been called the principle of set-
theoretical induction.8 Here is an application of set-theoretical induction.

Theorem: No set belongs to itself.
Proof. Suppose that some set belongs to itself, i.e., that (ix)xEx.

> (ix)(xex& (y)(yex-+ ~yey))

8By Tarski, among others.
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is an axiom of regularity. By modus ponens, then, some set x belongs
to itself though no member of x (not even x) belongs to itself. This is
a contradiction.

The axioms whose derivations we have given are those statements which
are often taken as axioms of ZF and which are deducible from all (suffi-
ciently strong9) theories that can fairly be called formalizations of the
iterative conception, as roughly described. (The axiom of extensionality
has a special status, which we discuss below.) Other axioms than those
we have given could have been taken as axioms of the stage theory. For
example, we could have fairly taken as an axiom a statement asserting
the existence of a stage, not immediately later than any stage, but later
than some stage that is itself neither the earliest stage nor immediately
later than any stage. Such an axiom would have enabled us to deduce
a stronger axiom of infinity than the one whose derivation we have
given, but this stronger statement is not commonly taken as an axiom
of ZF. We could also have derived other statements from the stage
theory, such as the statement that no set belongs to any of its members,
but this statement is never taken as an axiom of ZF. We do not believe
that the axioms of replacement or choice can be inferred from the iter-
ative conception.

One of the axioms of regularity,

(zH(ix)xez -» (ix)(xez & (y)(yex -* ~yez)))

is sometimes called the axiom of regularity; in the presence of other
axioms of ZF, all the other axioms of regularity follow from it. The
name 'Zermelo set theory' is perhaps most commonly given to the theory
whose axioms are i(x)(y)((z)(z€x <-* xEy) -+ x=y)\ i.e., the axiom of
extensionality, and the axioms of the null set, pairs, and unions, the
power-set axiom, the axiom of infinity, all the Aussonderungsaxioms,
and the axiom of regularity.10 With the exception of the axiom of exten-
sionality, then, all the axioms of Zermelo set theory follow from the
stage theory.

IV. Zermelo-Fraenkel set theory

The axioms of replacement. ZF is the theory whose axioms are those of
Zermelo set theory and all axioms of replacement.11 A formula of <£ is an

^Sufficiently strong' may here be taken to mean "at least as strong as the stage theory."
l0Zermelo (1908) took as axioms versions of the axioms of extensionality, the null set,

pairs (and unit set), unions, the power-set axiom, the axiom of infinity, the Aussonderungs-
axioms, and the axiom of choice.

1 Sometimes the axiom of choice is also considered one of the axioms of ZF.
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axiom of replacement if it is the translation into <£ of the result "substi-
tuting" a formula of £ for ' F ' in

Fis a function -> (z)(ly)(x)(xey ~ (3w)(wez & F(w)=x))

There is an extension of the stage theory from which the axioms of
replacement could have been derived. We could have taken as axioms all
instances (that can be expressed in $) of a principle which may be put, 'If
each set is correlated with at least one stage (no matter how), then for any
set z there is a stage s such that for each member w of z, s is later than
some stage with which w is correlated'. This bounding or cofinality prin-
ciple is an attractive further thought about the interrelation of sets and
stages, but it does seem to us to be a further thought, and not one that
can be said to have been meant in the rough description of the iterative
conception. For that there are exactly a>\ stages does not seem to be ex-
cluded by anything said in the rough description; it would seem that Ru{

(see below) is a model for any statement of <£ that can (fairly) be said to
have been implied by the rough description, and not all of the axioms of
replacement hold in Roo\.]2 Thus the axioms of replacement do not seem
to us to follow from the iterative conception.

Adding the axioms of replacement to those of Zermelo set theory
enables us to define a sequence of sets, [Ra}9 with which the stages of
the stage theory may be identified. Suppose we put Ro= the null set;
Ra + i =Ra U the power set of Ra, and R\= U(3<\Rp (^ a limit ordinal) -
axioms of replacement ensure that the operation R is well-defined - and
say that s is a stage if (3a)s = Rai that x is formed at s if x is subset but
not a member of s, and that s is earlier than t if, for some a, /3, s = Ra,
t = Rp, and a<(3. Then we can prove as theorems of ZF not only the
translations into the language of set theory of the axioms of the stage
theory, but also those of all those stronger axioms asserting the existence
of stages further and further "out" that might have been suggested by
the rough description (and those of the instances of the bounding prin-
ciple which are expressible in $ as well). ZF thus enables us to describe
and assert the full first-order content of the iterative conception within
the language of set theory.

Although they are not derived from the iterative conception, the rea-
son for adopting the axioms of replacement is quite simple: they have
many desirable consequences and (apparently) no undersirable ones. In
addition to theorems about the iterative conception, the consequences of
replacement include a satisfactory if not ideal13 theory of infinite numbers,

l2Worse yet, /?$ would also seem to be such a model. (<5j is the first nonrecursive ordinal.)
13An ideal theory would decide the continuum hypothesis, at least.
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and a highly desirable result that justifies inductive definitions on well-
founded relations.

The axiom ofextensionality. The axiom of extensionality enjoys a special
epistemological status shared by none of the other axioms of ZF. Were
someone to deny another of the axioms of ZF, we would be rather more
inclined to suppose, on the basis of his denial alone, that he believed that
axiom false than we would if he denied the axiom of extensionality.
Although 'there are unmarried bachelors' and 'there are no bachelors'
are equally preposterous things to say, if someone were to say the former,
he would far more invite the suspicion that he did not mean what he said
than someone who said the latter. Similarly, if someone were to say,
"there are distinct sets with the same members," he would thereby jus-
tify us in thinking his usage nonstandard far more than someone who
asserted the denial of some other axiom. Because of this difference, one
might be tempted to call the axiom of extensionality "analytic," true by
virtue of the meanings of the words contained in it, but not to consider
the other axioms analytic.

It has been persuasively argued, by Quine and others, however, that
until we have an acceptable explanation of how a sentence (or what it
says) can be true in virtue of meanings, we should refrain from calling
anything analytic. It seems probable, nevertheless, that whatever justifi-
cation for accepting the axiom of extensionality there may be, it is more
likely to resemble the justification for accepting most of the classical
examples of analytic sentences, such as 'all bachelors are unmarried' or
'siblings have siblings' than is the justification for accepting the other
axioms of set theory. That the concepts of set and being a member of
obey the axiom of extensionality is a far more central feature of our use
of them than is the fact that they obey any other axiom. A theory that
denied, or even failed to affirm, some of the other axioms of ZF might
still be called a set theory, albeit a deviant or fragmentary one. But a
theory that did not affirm that the objects with which it dealt were iden-
tical if they had the same members would only by charity be called a
theory of sets alone.

The axiom of choice. One form of the axiom of choice, sometimes called
the "multiplicative axiom," is the statement, 'For any JC, if x is a set of
nonempty disjoint sets (two sets are disjoint if nothing is a member of
both), then there is a set, called a choice set for x, that contains exactly
one member of each of the members of x\

It seems that, unfortunately, the iterative conception is neutral with
respect to the axiom of choice. It is easy to show that, since, as is now
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known, neither the axiom of choice nor its negation is a theorem of ZF,
neither the axiom nor its negation can be derived from the stage theory.
Of course the stage theory, which is supposed to formalize the rough
description, could be extended so as to decide the axiom. But it seems
that no additional axiom, which would decide choice, can be inferred
from the rough description without the assumption of the axiom of
choice itself, or some equally uncertain principle, in the inference. The
difficulty with the axiom of choice is that the decision whether to regard
the rough description as implying a principle about sets and stages from
which the axiom could be derived is as difficult a decision, because essen-
tially the same decision, as the decision whether to accept the axiom.

Suppose that we tried to derive the axiom by arguing in this manner:
Let x be a set of nonempty disjoint sets, x is formed at some stage s. The
members of members of x are formed at earlier stages than s. Hence, at s,
if not earlier, there is a set formed that contains exactly one member of
each member of x. But to assert this is to beg the question. How do we
know that such a choice set is formed? If a choice set is formed, it is
indeed formed at or before s. But how do we know that one is formed at
all? To argue that at s we can choose one member from each member of x
and so form a choice set for x is also to beg the question: "we can't
choose" one member from each member of x if there is no choice set for x.

To say this is not to say that the axiom of choice is not both obvious
and indispensable. It is only to say that the justification for its acceptance
is not to be found in the iterative conception of set.
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