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Abstract
Formalised libraries of combinatorial mathematics have rap-
idly expanded over the last five years, but few use one of the
most important tools: probability. How can often intuitive
probabilistic arguments on the existence of combinatorial
structures, such as hypergraphs, be translated into a formal
text? We present a modular framework using locales in Is-
abelle/HOL to formalise such probabilistic proofs, including
the basic existence method and first formalisation of the
Lovász local lemma, a fundamental result in probability. The
formalisation focuses on general, reusable formal probabilis-
tic lemmas for combinatorial structures, and highlights sev-
eral notable gaps in typical intuitive probabilistic reasoning
on paper. The applicability of the techniques is demonstrated
through the formalisation of several classic lemmas on the
existence of hypergraphs with certain colourings.

CCS Concepts: •Mathematics of computing→ Proba-
bility and statistics; Graph theory; • Theory of com-
putation→ Logic and verification; Higher order logic;
Automated reasoning.

Keywords: Interactive theorem proving, formalisation of
mathematics, Isabelle/HOL, hypergraph colourings, combi-
natorics, probability, Lovász local lemma
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1 Introduction
In recent years there has been a surge of interest in the for-
malisation of mathematics using proof assistants such as
Isabelle/HOL, Lean and Coq. Aside from obvious verification
advantages, other benefits from the formalisation process it-
self include gaining new insights into proofs, the integration
of advances in automation, and building up rich, searchable
libraries of verified research level mathematics.

Combinatorics, once underrepresented in formal libraries,
has recently seen a significant increase in formalisation ef-
forts. Historically, the classic example was Gonthier’s funda-
mental formalisation of the four-colour theorem [18]. More
recent formalisations include our own on new libraries for
combinatorial structures [16], and notable theorems from
graduate or research level mathematics such as Szemerédi’s
regularity lemma [11, 15], the cap-set problem [10] and the
Kruskal-Katona theorem [25].
Combinatorial formalisations present many interesting

challenges: from the typically human intuitive nature of
proofs and discrepancies in definitions, to the mixed-bag of
often surprising, yet essential proof techniques from other
fields. This paper explores how often intuitive probabilistic
arguments on the existence of combinatorial structures trans-
late to a formal environment. Rather than focusing on prov-
ing a singular theorem, this paper presents a more general
approach to formalisation which targets proof techniques
and their application in a formal environment.

The probabilistic method plays an increasingly important
role in modern combinatorial research. The method refers
to a vast array of probabilistic techniques and their appli-
cation in a combinatorics setting, summarised by Alon and
Spencer in their seminal book [3]. The basic method involves
establishing a probability space over certain structures, then
showing these structures have the desired properties with a
positive probability. Many recent breakthroughs in combina-
torics can be attributed to the application of these methods,
such as Keevash’s recent results on combinatorial designs
[23]. Furthermore, the role of randomness in many aspects
of computer science and physics, where combinatorics is
often applied, has further driven the development of these
techniques. This provides another motivation for their for-
malisation.

Despite the commonality of these methods inmodern com-
binatorics, there are still few examples in formal libraries.
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The two primary examples are in Isabelle/HOL: Noschinski’s
girth chromatic theorem formalisation [28] and Hupel’s ran-
dom subgraph threshold work [21]. Alon and Spencer iden-
tify both theorems as elegant probabilistic proofs [3]. The for-
malisations are mostly focused on the theorems rather than
reusability of the techniques. Additionally, the dependent ran-
dom choice technique was used in Koutsoukou-Argyraki et
al.’s formalisation of the Balog–Szemerédi–Gowers theorem
[24]. While no other examples of the probabilistic method
for combinatorics were found in other proof assistants, for-
malisations of random algorithms and several relevant basic
probability concepts can be found in proof assistants such
as HOL, Lean, and Coq. These are identified where relevant,
and discussed in comparison to this paper in Sect. 7.
This paper will explore a number of basic and advanced

techniques from the probabilistic method and demonstrate
their application through proofs on hypergraph colourings.
This notably includes the first formalisation of the Lovász
local lemma, an important result in probability. We aim to
establish a general framework through a novel use of locales,
Isabelle’s module system, which can be used for future for-
mal probabilistic proofs on any type of incidence system, the
basis for many combinatorial structures. We additionally sig-
nificantly contribute to basic probability libraries in Isabelle.
The full formalisations are available on Isabelle’s Archive of
Formal Proof [13, 14, 17].

In (2) we provide the necessary background, then (3) gives
the formalisation of background concepts on conditional
probability, independent events, and hypergraphs. Section
(4) presents the basic method framework, followed by (5)
which explores the formalisation of the Lovász local lemma,
and finally (6) which demonstrates the application of the
basic framework and Lovász local lemma to existence prop-
erties on hypergraphs. We conclude with a discussion of
related work, key lessons learnt for formalising intuitive
probabilistic proofs, and potential future directions in (7).

2 Background
2.1 Mathematical Background
Probability theory is built on top of the much broader field of
measure theory. A measure space is a triplet (𝑋, 𝐵, 𝜇) where
(𝑋, 𝐵) is a measurable space and 𝜇 : 𝐵 → [0, +∞] is a count-
ably additive measure. A probability space is a particularly
important restricted measure space. Its definition, given be-
low, adapts the triple’s syntax to match the notation tradi-
tionally used in probability.

Definition 2.1 (Probability Space). A probability space is
a measure space (Ω, F , P) which has a total measure of 1:
P(Ω) = 1.

Commonly, Ω represents the sample space, the set of all
possible states a random system could be in. F is the set of
all possible events the probability space can measure, using

the probability measure P, where P(𝐸) is the probability of
event 𝐸 ∈ F occurring. In a discrete context, F = Pow(Ω).
It’s assumed readers have a basic knowledge of probability.
A particularly important concept for this formalisation is
independent events.

Definition 2.2 (Independent events). A collection of events
𝐸 is defined as independent if and only if for all subsets 𝐹 ⊆ 𝐸,
P(⋂ 𝐹 ) = ∏

𝑓 ∈𝐹 P(𝑓 )

A related but weaker concept is that of a mutually inde-
pendent set of events.

Definition 2.3 (Mutually independent events). Given an
event 𝐴 and a set of events 𝐸, 𝐴 is mutually independent of
𝐸 if for all subsets 𝐹 ⊆ 𝐸, P(𝐴 ∩ (⋂ 𝐹 )) = P(𝐴)P(⋂ 𝐹 )

Note that in both the above definitions we use purely set
based notation, recalling that an event is simply a subset of
the elements of the probability space. This notation translates
directly to a formal environment compared to the intuitive
logical notation typically used in mathematical text, P(𝐴∧𝐵).
Combinatorial applications of probability theory com-

monly involve discrete probabilitymeasures, which aremuch
simpler then continuous measures. For example, discrete
measures use summations rather than integrals. Most proba-
bility spaces in combinatorics involve a point measure, which
assigns a specific probability to each event in the probability
space. A uniform count measure is a point measure where
each event has the same probability, i.e. P(𝐴) = 1/|Ω |.

The core idea behind the probabilistic method for combi-
natorics is to show the existence of a structure with certain
features by showing its probability is strictly positive. There
are many techniques which can be used to obtain this posi-
tive probability bound including [3]: basic bounds; linearity
of expectation; alterations; the second moment method (vari-
ance inequality); and the local lemma. More details on the
basic bounds, and the local lemma will be presented along-
side their formalisations.
Combinatorial structures are varied, but are often based

on incidence set systems — a set of elements (e.g. vertices) and
collection of subsets of those elements (e.g. edges). Common
examples include combinatorial designs, matroids, graphs,
and hypergraphs. Hypergraphs can intuitively be viewed
as a generalisation of graphs where edges can be of any
(non-empty) size.

2.2 Isabelle Background
Isabelle/HOL, henceforth referred to as Isabelle, is a proof as-
sistant built on higher order logic. It has a number of features
that make it ideal for formalising mathematics, including: the
human-readable Isar proof language [33], strong automation
through Sledgehammer [30], extensive foundational libraries
in analysis and algebra, and the Archive of Formal Proofs
(AFP) with nearly four million lines of code across entries in
mathematics and computer science. As Isabelle was also used
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in the only prior formalisations of the probabilistic method,
it is ideal to continue this type of work.

2.2.1 Locales and Combinatorial Structures. This pa-
per builds on our previous work formalising several com-
binatorial structures, such as design theory [16] and graph
theory [12]. These libraries use the locale-centric approach
for formalising mathematical hierarchies, based on ideas
introduced by Ballarin [5].
Locales are Isabelle’s module system, enabling flexible

and extensible inheritance hierarchies and proof contexts.
A basic locale consists of a combination of parameters and
assumptions. For example, a graph can be defined using a
locale with two parameters for the vertex and edge sets, and
assumptions to ensure edges are wellformed.

New locales can directly inherit from one or more existing
locales, allowing for inheritance diamonds, andwill often add
on additional parameters or assumptions. The inheritance
hierarchy can also be manipulated after locale declarations
using sublocales. For example, sublocale A ⊆ B, shows that
locale A indirectly inherits from locale B.
Sublocale declarations can also use the rewrites com-

mand which tells Isabelle to internally rewrite all inherited
facts within the current locale context using an equivalent
statement for a parameter or definition.

Where possible, properties on locale structures should be
declared and proved within the locale context, however, it is
also often necessary to interpret a locale instance for use in
theorem statements (global interpretation) and proofs (local
interpretation). Further detail on locales is discussed in the
tutorials [4] and as needed through this paper.

2.2.2 Existing Libraries. Isabelle has extensive libraries
in measure theory, which the probability libraries are built
on. A probability space, given by Def. 2.1, is defined using the
locale prob-space, which takes a measure space as its single
parameter and an additional assumption constraining the
value of the measure over the space to 1. This locale contains
formal definitions for common concepts such as probability
measures, expectation, variance, space and events. These
are often abbreviations, i.e. pretty syntax, from concepts in
measure theory and analysis. Many important lemmas are
similarly inherited from the measure theory libraries.

There are many pre-defined types of measures. This paper
refers to (1) the point-measure, which takes an additional
function 𝑝 ∈ Ω → R, that “assigns a probability” to each
object in the space, and (2) the uniform-count-measure which
is a uniform specialisation of a point-measure where the
function 𝑝 is not required.

3 Background Formalisation Work
Several significant extensions to existing libraries are re-
quired for this project, focusing on hypergraphs and proba-
bility theory. This section presents the key additions.

3.1 Probability
3.1.1 General Event Extensions. The Prob-Events-Extras
theory formalised for this project contains many useful lem-
mas on manipulating combinations of events and calculating
the resultant probabilities. This includes lemmas showing
properties such as event closure and basic probability bounds
on the complement, intersection and union operations, typi-
cally requiring inductive proofs, such as the example below.
lemma events-inter :
assumes finite S assumes S ≠ {}
shows (∧ A. A ∈ S =⇒ A ∈ events) =⇒⋂

S ∈ events
Note that in Isabelle’s meta-logic,

∧
, is the universal quan-

tifier. Additionally, observe the non-empty assumption in the
above proof. This is not required on paper as

⋂ ∅ = U, andU
and Ω are considered interchangeable. However, this is the
first sign of the universal set vs probability space challenge
in Isabelle’s probability library. In Isabelle the universal set
(represented by UNIV ) is not necessarily equal to Ω.

3.1.2 Conditional Probability. There was surprisingly
little support available in the existing Isabelle probability
libraries for conditional probability. The most significant for-
malisation effort appears to be on Markov chains [20]. This
introduced the cond-prob definition, and cond-pmf for work-
ing with conditional probabilities using probability mass
functions (PMFs). Both are available in the main probability
library; however, we found very few general lemmas.
The current notation in the cond-prob definition is bulky

to use, so we begin our formalisation by defining an abbrevi-
ation which mirrors mathematical notation.
abbreviation cond-prob-ev :: ′a set⇒ ′a set⇒ real (P ′(- | - ′))
where P(B | A) ≡ P(x in M . (x ∈ B) | (x ∈ A))
Conditional probability can also be viewed as the proba-

bility of 𝐴 given a uniform measure on 𝐵.
lemma measure-uniform-measure-eq-cond-prob-ev3:
assumes A ∈ events B ∈ events
shows P(A | B) = measure (uniform-measure M B) A
This proof enables existing lemmas to effectively be lifted

to the conditional probability space. Amongst the standard
lemmas formalised on conditional probability, the most no-
ticeable is Bayes theorem and variations. Despite its relevance
and simplicity, this doesn’t appear to have been previously
formalised in Isabelle. However, it has been formalised in
most other systems, typically as part of significant condi-
tional probability developments, such as Mizar [31], HOL
[19], Lean [32], and Coq [2, 27].

We formalise Bayes theorem first using its multiplicative
form, as given below, as division can hinder automation
of formal proofs. The more typical division format is also
available in the final library.
theorem Bayes-theorem:
assumes A ∈ events B ∈ events
shows prob B ∗ P(A | B) = prob A ∗ P(B |A)
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Particularly important to later work, is the formalisation
of the general multiplication rule on events. This had not
previously been formalised in Isabelle, however it does ap-
pear alongside a formalisation of Bayes theorem in other
systems, such as [2].

The first challenge of this supposedly simple proof is trans-
lating the index notation commonly used on paper. There
are thus two versions of this proof, one on a list of events
(which imposes an ordering), and the other using a bijec-
tive indexing function on an event collection. The latter is
more flexible to use, as it is relatively easy to obtain an index
function given a finite collection, using bijections on sets.
lemma prob-cond-inter-fn:
assumes bij-betw g {0..<card S} S
assumes finite S and S ≠ {} and S ⊆ events
shows prob (⋂ S) = prob (g 0)∗
(∏ i ∈{1..<(card S)} . P(g i | (⋂ (g ‘ {0..<i}))))
Several versions of this lemma are presented in the for-

malisation, including specialisations involving event com-
plements and a variation for conditional probabilities. Due
to the universal set vs probability space challenge previously
mentioned, in some cases the first element of the product is
written separately, as shown above.

3.1.3 Independent Events. There is an existing formali-
sation in the main Isabelle distribution for independent sets
and events. It defines indep-event, which takes two singular
events and returns a boolean value. A more general version
of this is indep-events, which takes a set of events and re-
turns true if and only if they are all independent, according
to Def. 2.2.

The basic indep-event definition had few foundational lem-
mas defined. While this is just a special case of the more
general indep-events definition, the pairwise definition is
useful when formalising properties on the more general def-
inition, which often involves induction. Our formalisation
contributes new introduction and elimination rules, and com-
mutativity properties. Another useful lemma shows that if
two different index functions are equivalent on the relevant
set of events 𝐸, then one is independent if and only if the
other is.
lemma indep-events-fn-eq:
assumes

∧
Ai. Ai ∈ E =⇒ F Ai = G Ai and indep-events F E

shows indep-events G E

The most interesting part of this formalisation is again
around event complements. Probabilistic reasoning com-
monly notes that switching some subset of independent
events to their complements still results in an independent
set without proof. The formalisation first establishes several
helper lemmas on the indep-event pairwise definition. The
main proof then proceeds by induction, but also requires a
fiddly helper lemma, indep-events-one-compl showing that
switching only one event to its complement maintained in-
dependence. The final lemma is stated below.

lemma indep-events-compl:
assumes indep-events F E and finite E
shows indep-events (𝜆 Ai. space M − F Ai) E
Independent event formalisations can also be found in

Lean’s Mathlib [9], associated with significant recent work
on the probability libraries such as [34]. Additionally, in-
dependent events have been formalised in Coq [27], with
formalisations of independent variables also common [2].
Mutually independent events as defined in Def. 2.3 had

not previously been formalised in Isabelle/HOL, or any other
system to our knowledge. However, the formal definition
can be stated similarly to independent events where the set 𝐼
represents the indexes of some set of events, and the function
𝐹 maps each index to an event in the probability space.
definition mutual-indep-events:: — (Definition 2.3)
′a set⇒ (nat⇒ ′a set) ⇒ nat set⇒ bool
where mutual-indep-events A F I ←→
A ∈ events ∧ (F ‘ I ⊆ events) ∧ (∀ J ⊆ I . J ≠ {} −→
prob (A ∩ (⋂ j∈J . F j)) = prob A ∗ prob (⋂ j∈J . F j))
The theory contains numerous basic lemmas enabling

easy reasoning on mutual independence. There are many
commonalities between mutual independence and classical
independence, with the latter being a stronger result. In
particular, we formalise a lemma showing that a set of events
𝑆 is independent if and only if for every event 𝐴 ∈ 𝑆 , 𝐴 is
mutually independent to the set 𝑆 \ {𝐴}.
lemma mutual-indep-ev-set-all:
assumes F ‘ I ⊆ events
assumes

∧
i. i ∈ I =⇒ (mutual-indep-events (F i) F (I − {i}))

shows indep-events F I

3.2 Hypergraphs
Hypergraphs have the same underlying foundations as com-
binatorial designs, which, as mentioned in Sect. 2.2, we have
previously formalised [16]. Both are simply incidence set
systems; however, hypergraphs are often used in different
ways with their own unique concepts. For example, hyper-
graph language is less limited to finite structures and is more
commonly used in applications of the probabilistic method.

The locale-centric approach provides an easy way to adapt
the existing design theory library to mirror hypergraph lan-
guage while retaining the previously proved properties. A
full discussion on the hypergraph formalisation and this ap-
proach is out of scope of this paper, however, some basics
required for Sect. 6 are highlighted. Prior to the design theory
library work, no other proof assistants had general libraries
for incidence systems, including hypergraphs.

3.2.1 Designs to Hypergraphs. We first define a hyper-
system locale. This directly inherits from the pre-existing
incidence-set-system locale which has two parameters repre-
senting a carrier set and a collection of subsets, defined using
design theoretic language, as well as a simple wellformed
assumption which ensures all vertices in edges are part of the
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vertex set. The for keyword following the direct inheritance
declaration enables us to replace the prior design theoretic
language used to define the parameters with hypergraph
language (vertices and edges) and notation (Vand E).

locale hypersystem = incidence-system vertices :: ′a set
edges :: ′a hyp-edge multiset forvertices (V) and edges (E)

Note that ’a hyp-edge is a type synonym for ’a set, and ’a
hyp-graph for ’a set × ’a hyp-edge multiset. Within the locale
we define numerous basic definitions such as neighbourhood,
degree, adjacency and rank.
From here we continue to define different variations of

hypergraphs either by direct or indirect inheritance of design
concepts. For example a hypergraph inherits from both the
hypersystem locale and the inf-design locale, which adds a
non-empty edge condition. Additionally, we also formalise
variations of uniform hypergraphs (constant size edges) and
established inheritance with the block-design locale, as well
as regular hypergraphs (constant degree), and establish in-
heritance with the const-rep-design locale.
These inheritances are established indirectly, as hyper-

graphs first define the properties in a non-finite environment.
The example below demonstrates both the locale declaration
for uniform hypergraphs and how to formalise this inheri-
tance. Note that the rewrites command adds a proof goal,
but enables us to prove the equivalence between different
definitions. It then internally rewrites any inherited lemmas
using the inherited definition to use the equivalent local
definition within the locale context.

locale kuniform-hypergraph = hypergraph +
fixes k :: nat
assumes uniform:

∧
e . e ∈# E =⇒ card e = k

sublocale fin-kuniform-hypergraph-nt ⊆ block-designV E k
rewrites point-replication-number E v = hdegree v
and points-index E vs = hdegree-set vs

3.2.2 Colourings. Colourings are rarely reasoned on in
design theory, but are one of the most common concepts
in hypergraph (and graph) theory. As such, the hypergraph
library needs to be extended to include a formalisation of
hypergraph vertex colourings.

Definition 3.1 (n-vertex colouring). A 𝑛-vertex colouring
is an assignment of up to 𝑛 colours to the vertices of a hy-
pergraph such that no edge is monochromatic, i.e. contain
vertices all the same colour.

The formalisation first definesmonochromatic edges. Prior
formalisations of graph colourings such as Noschinski’s [29]
used a simple set partition, but in this formalisation a par-
tition approach makes it tricky to refer to an edge having
a particular colour due to the unordered nature of sets. It
also only allows for a colouring of precisely 𝑛 colours, rather
than the more general up to 𝑛 colours in Def. 3.1, a common

inconsistency in literature. As such we formalise a colour-
ing as a function inV → {0.. < 𝑛} where colour is a type
synonym for the natural numbers.
definition mono-edge :: ( ′a⇒ colour) ⇒ ′a hyp-edge⇒ bool
where mono-edge f e ≡ ∃ c. ∀ v ∈ e. f v = c

The lemma is-proper-colouring-alt matches Def. 3.1 by un-
folding the proper-vertex-colouring definition. The complete-
vertex-colouring definition models a colouring using pre-
cisely 𝑛 colours, which we show to be equivalent to the
partition definition approach.
Many lemmas are available in the hypergraph library on

vertex colourings. These could easily be translated to other
incidence systems defined using the locale-centric approach,
such as a graph theoretic context using our existing undi-
rected graph theory library [12].

4 The Basic Method
The core idea behind the probabilistic method is to show the
existence of a structure with certain features via a positive
probability. There is a basic methodology to do this, with the
calculations tending to get more complicated in line with
more complex problems. This section explores the formali-
sation of a framework to mirror aspects of the basic method
in a formal environment.

4.1 The Basic Method Framework
The basic method, or pattern for applying the probabilistic
method on paper, can be summarised by five steps: (i) in-
troduce randomness to the problem domain; (ii) randomly
construct/select an object in the problem domain; (iii) define
the desired property of this object (or property to avoid); (iv)
show the desired property has a positive probability (or prob-
ability less than 1 for avoidance); (v) obtain an example of
an event in the probability space with the desired property.

We propose that a 4-step formal framework can help struc-
ture formal proofs to mirror these steps.

1. Define a probability space.
2. Define object properties
3. Calculate probabilities
4. Obtain exemplar object
Note the omission of the explicit selection/construction of

an object. Given the more structured way we must introduce
randomness in a formal environment, most of our proba-
bility proofs are quantified over all elements of the space,
so selection is done implicitly. Furthermore, while (2) is an
important step, it is very problem specific so little can be
done to generalise it. The remainder of this section focuses
on general techniques for the remaining three steps.

4.2 Defining the Probability Space
Let’s first look at step (1), defining a probability space. On
paper, the first step introduces randomness to the problem
domain in usually one informal sentence. It would be very
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rare that the probability space is actually defined, presenting
the first challenge of formalising the probabilistic method.
This framework aims to significantly simplify this step.

To establish a probability space in Isabelle, it is necessary
to identify the probability measure you want to use and
then interpret an instance of the prob-space locale in each
individual proof. Additionally, to easily apply simplification
tactics later in the proof, it is often useful to prove a number
of additional facts around basic properties such as the space,
events andmeasurability specific to that locale interpretation.
When dealing with similar probability spaces across different
proofs, this can result in notable duplication.
Noschinski’s work [28] defined an edge-space locale, a

probability space over graph edges, which introduces some
modularity solving some of the above issues. Our solution
significantly extends on this by taking full advantage of the
flexibility of inheritance patterns with locales to develop a
framework not specific to a particular measure. Firstly, we
define a basic vertex space locale for probabilistic reasoning
on any finite non-trivial incidence system (such as designs,
graphs, or hypergraphs):

locale vertex-fn-space = fin-hypersystem-vne +
fixes F :: ′a set⇒ ′b set and p :: ′b⇒ real
assumes ne: F V ≠ {} and fin: finite (F V)
assumes pgte0:

∧
fv . fv ∈ F V =⇒ p fv ≥ 0

assumes sump: (∑ x ∈ (F V) . p x) = 1

Here, F represents a function on the vertex set such that
Ω = 𝐹 (V) in the resultant probability space. The parameter
p represents a mapping from elements of 𝐹 (V) to the reals,
intended to assign each element a probability. Using the fin-
hypersystem-vne locale ensures this space could be used for
practically any finite non-empty incidence system structure
with at least one element in its base set.

Within the locale, two further definitions are established
for notation: Ω = F V and M = point-measure Ω p. In com-
binatorics, which most commonly uses discrete probability
spaces, a point measure is by far the most common, where
some probability is assigned to each object in the space. The
locale also includes formalisations of basic lemmas on the
measure, finiteness properties, space, events, and measurable
properties. These are all simple to formalise, but having them
significantly improves automation and avoids these same
basic properties being proved in each individual proof. Fi-
nally, the formalisation establishes that this locale represents
a probability space, via a sublocale declaration. This enables
probability lemmas and notation to be used naturally in the
locale context.

sublocale vertex-fn-space ⊆ prob-space M

A specialisation of a point measure is a uniform count
measure, which assigns each element in the space the same
probability. This is also particularly common in applications
of the probabilistic method, so we define a new locale which

omits the p variable and defines MU as a uniform-count-
measure. A simple proof establishes a sublocale relationship
between this and the point measure counterpart.
locale vertex-fn-space-uniform = fin-hypersystem-vne +
fixes F :: ′a set⇒ ′b set
assumes ne: F V ≠ {} and fin: finite (F V)

sublocale vertex-fn-space-uniform ⊆ vertex-fn-space V E F
(𝜆x . 1 / card ΩU ) rewrites Ω = ΩU and M = MU

The use of rewrites is again particularly important, as
it removes the need to unfold multiple definitions and in-
ternally rewrites the basic lemmas from the vertex-fn-space
locale to use the parameter notation declared for the vertex-
fn-space-uniform locale.

With these very general probability space locales in place,
specialisations can be established as needed. Use of sublo-
cales with parameters rewritten appropriately is key to this
framework. The formalisation tested this process on several
simple cases, such as a probability space over the vertices, or
a subset of the vertex set. These could be used at the start of
a proof which would naturally read something like “select a
vertex at random”.

In our case, we are interested in a space over a mapping
from the vertex set to some property with a uniform proba-
bility distribution. This idea is formalised in the vertex-prop-
space locale, which can be shown to be a sublocale of the
vertex-fn-space-uniform locale given the core hypergraph
parametersVand E, and the mapping which is represented
by 𝜆V . V →𝐸 P.
locale vertex-prop-space = fin-hypersystem-vne +
fixes P :: ′b set assumes finP : finite P and nempty-P : P ≠ {}

sublocale vertex-prop-space ⊆
vertex-fn-space-uniformV E (𝜆 V . V →𝐸 P )
Notably, given most of these locales build off the general

hypersystem locale, which ultimately represents a basic in-
cidence set system, the framework up to this point could
also easily be used for other variations of set systems such
as graphs and designs.

In Sect. 6, we are interested in probabilistic reasoning on
random colourings of vertices in non-trivial hypergraphs.
The vertex-colour-space locale extends a finite non-trivial
hypergraph with the single parameter n, representing a non-
zero number of colours. The formalisation also shows that it
is a sublocale of the vertex-prop-space locale.
locale vertex-colour-space = fin-hypergraph-nt +
fixes n :: nat
assumes n-lt-order : n ≤ order and n-not-zero: n ≠ 0

sublocale vertex-colour-space ⊆ vertex-prop-space V E {0..<n}
rewrites ΩU = C𝑛

Again, the rewrites command is integral to internally
rewrite the standard definitions from the prob-space locale
for concepts such as space to use the equivalent hypergraph
notation, C𝑛 within the vertex-colour-space locale. This im-
proves automation in later proofs and reduces the need to
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unfold definitions. All the basic lemmas from the original
vertex-fn-space locale are still available, as well as other ex-
tensions from intermediate locales in this probability space
hierarchy. Any proof involving a random colouring can now
simply interpret this locale to set up the probability space
and automatically access these properties.

This methodology naturally encourages increased modu-
larity in proof, and thus reduces duplication. For example,
general facts on vertex colouring probabilities can be for-
malised within the vertex-colour-space locale, instead of indi-
vidual proofs. This is particularly valuable for lemmas that
are often presented as intuitive facts on paper, but require
fiddly proofs in a formal environment, that would signifi-
cantly increase the proof length if included in the main proof.
For example, on paper, a uniform vertex colouring could be
described by saying “colour each vertex red or blue with
equal probability”. In the formal probability space, this actu-
ally means each vertex colouring function is equally likely.
However, it would also be useful to derive a result on the
probability of each individual vertex having a specific colour-
ing, or more generally, some arbitrary property. This is a
simple lemma in vertex-prop-space, which is automatically
rewritten in vertex-colour-space to use Ω𝑈 = C𝑛 .
lemma prob-uniform-vertex:
assumes b ∈ P and v ∈ V
shows prob {f ∈ ΩU . f v = b} = 1/(card P)
While it is intuitive that a vertex would have a colour

𝑐 with probability 1/𝑛 given 𝑛 colours, the formalisation
requires reasoning on the cardinality of filtered sets. The PiE-
Rel-Extras theory formalises a number of counting lemmas
specific to the extensional function set relation.

4.3 Basic Bounds
The main task of step (2) of the framework is typically defin-
ing the bad events (events to be avoided), or alternatively, the
desired properties of the structure. Identifying these can be
a challenge in the textbook proof, but once identified should
be straightforward to translate to a formal environment.
Once the properties have been identified, step (3) of the

formalisation involves calculations to show the structure
has the desired properties with a positive probability. These
calculations can be complex, but there are a number of simple
bounds which are a useful starting point. This framework
formalises these basic bounds for easy applicability.
Firstly, the union bound intuitively states that given a

collection of bad events with a total probability less than one
(usually smaller), it is possible to avoid all of them [35].

Theorem4.1 (Union Bound). Given events𝐴 = {𝐴1, . . . , 𝐴𝑛},
then P(⋃𝐴) ≤ ∑𝑛

𝑖=1 P(𝐸𝑖 ). Therefore, if
∑𝑛

𝑖=1 P(𝐸𝑖 ) < 1 then
P(⋃𝐴) > 0

The lemma finite-measure-subadditive-finite from the mea-
sure theory libraries previously formalised the first part of

this statement in Isabelle. It is simple to extend this to show
the avoidance version of the theorem for event complements.
lemma Union-bound-avoid-fun: — (Theorem 4.1)
assumes finite A and (∑ a ∈ A. prob (f a)) < 1 and f‘A ⊆ events
shows prob (space M −⋃ (f ‘ A)) > 0

The other bound is the complete independence bound [35].
Intuitively, this states that given an arbitrary number of
independent bad events, each occurring with a probability
less than one, then it is possible, often with a tiny probability,
to avoid all of them.

Theorem 4.2 (Complete Independence Bound). Given a set
of independent events 𝐴 = {𝐴1, . . . , 𝐴𝑛} if for all 𝑖 , P(𝐴𝑖 ) < 1,

then P(⋃𝐴) > 0. Note
⋃
𝐴 =

𝑛⋂
𝑖=1

𝐴𝑖 .

This had not previously been formalised in Isabelle, and
required the lemmas on independent event complements
from Sect. 3.1. The formalisation is relatively straightforward,
requiring 10 Isar proof steps.
lemma complete-indep-bound2-index: — (Theorem 4.2)
assumes finite A and F ‘ A ⊆ events and indep-events F A
assumes

∧
a . a ∈ A =⇒ prob (F a) < 1

shows prob (space M − (⋃ (F ‘ A))) > 0

Several versions of both bounds are available in the final
library to increase applicability.

4.4 Obtain Structure
The final step of the framework typically obtains an exemplar
object from the space with the desired property. Intuitively,
this follows from demonstrating a positive probability, and
is often omitted entirely from a paper proof. However, it is a
necessary step in a formalisation. The framework includes
the formalisation of several existence lemmas, some based
on a positive probability, and the others for a probability less
than one when avoiding certain events.
lemma prob-lt-one-obtain:
assumes {e ∈ space M . Q e} ∈ events
and prob {e ∈ space M . Q e} < 1
obtains e where e ∈ space M and ¬ Q e

These obtain lemmas could be easily combined with the
formalisation of the union and independence bound lemmas.
This effectively combines steps (3) and (4) in the formal
framework and simplifies the overall proof. One example of
this is given below:
lemma Union-bound-obtain-fun:
assumes finite A
and (∑ a ∈ A. prob (f a)) < 1 and f ‘ A ⊆ events
obtains e where e ∈ space M and e ∉

⋃ { a ∈ A . f a}

5 Lovász Local Lemma
The Lovász local lemma is a fundamental tool from the prob-
abilistic method. It (and its variations) enable the provision
of tight bounds in situations dealing with rare events, i.e.
events that occur with a small positive probability. As such, it
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is particularly useful in step (3) of the framework. The lemma
had not previously been formalised in any system. Our for-
malisation process begins with the general lemma, which
can then be adapted to formalise several useful corollaries.

Theorem 5.1 (General Lovász local lemma). Let 𝐴1, . . . , 𝐴𝑛

be events in an arbitrary probability space. Suppose𝐷 = (𝑉 , 𝐸)
is a dependency (di)graph for the above events, and suppose
there are real numbers 𝑥1, . . . , 𝑥𝑛 such that 0 ≤ 𝑥𝑖 < 1 and
P[𝐴𝑖 ] ≤ 𝑥𝑖

∏
(𝑖, 𝑗 ) ∈𝐸 (1 − 𝑥 𝑗 ) for all 1 ≤ 𝑖 ≤ 𝑛. Then

P

[
𝑛⋂
𝑖=1

𝐴𝑖

]
≥

𝑛∏
𝑖=1
(1 − 𝑥𝑖 ) > 0

Thm. 5.1 has both classical and constructive proofs avail-
able. Our formalisation follows the traditional classical proof
and combines aspects of proofs from several sources, primar-
ily including the probabilistic method textbook [3], which
provides a good overview, and Zhao’s probabilistic method
lecture notes [35], which provided further detail.

5.1 Dependency Graphs
The first necessary concept for Thm. 5.1 is dependency graphs,
a (di)graph 𝐷 = (𝑉 , 𝐸) where events 𝐴1 . . . 𝐴𝑛 are repre-
sented by𝑉 and for each 𝑖 , 1 ≤ 𝑖 ≤ 𝑛, the event𝐴𝑖 is mutually
independent of all the events {𝐴 𝑗 : (𝑖, 𝑗) ∉ 𝐸}.
Interestingly, various texts will switch between using

graphs and digraphs in the language. For example Zhao
notes graphs are usually sufficient [35], however Alon and
Spencer only reference digraphs [3]. Ultimately dependency
graphs are simply an intuitive representation of mutual inde-
pendence, where any events not in a specific event’s neigh-
bourhood are part of a mutually independent set.
As such, the formalisation could have been completed

without dependency graphs. However, there can be advan-
tages intuitively with mirroring the language used in the
majority of texts, especially for formal lemmas which rep-
resent common proof techniques. Ideally, our aim is to set
up the formal environment such that it is easy to switch
between versions of the lemma statement with and without
dependency graph notation, as done on paper.
The formalisation process quickly demonstrated that us-

ing undirected graphs would highly restrict the ability to
move to a set representation. Generally, just because event
𝐴 𝑗 is in a mutually independent set of 𝐴𝑖 , the reverse isn’t
automatically true. As such, our formalisation of dependency
graphs uses Noschinski’s directed graph theory library [29].
locale dependency-digraph = pair-digraph G :: nat pair-pre-digraph
+ prob-space M :: ′a measure for G M +
fixes F :: nat⇒ ′a set
assumes vss: F ‘ (pverts G) ⊆ events
assumes mis:

∧
i. i ∈ (pverts G) =⇒ mutual-indep-events

(F i) F ((pverts G) − ({i} ∪ neighborhood i))
Several extensions to the library are required for this for-

malisation. Specifically, the original library did not include

a neighbourhood definition and related basic lemmas. Ad-
ditionally, we formalise a number of useful helper lemmas
specific to dependency digraphs. These are derived from the
mutual independence assumption, and again aim to avoid
later duplication. For example, dep-graph-indep-event estab-
lishes an independent event set based on vertices with a zero
outdegree, making use of the mutual-indep-ev-set-all lemma
from Sect. 3.1 in its proof.
lemma dep-graph-indep-events:
assumes A ⊆ pverts G and

∧
Ai. Ai ∈ A =⇒ out-degree G Ai = 0

shows indep-events F A

5.2 Formalising the General Lemma
Using the dependency digraph library, we can now formalise
Thm. 5.1 in the prob-space locale.
theorem lovasz-local-general: — (Theorem 5.1)
assumes A ≠ {} and F ‘ A ⊆ events and finite A
assumes

∧
Ai . Ai ∈ A =⇒ f Ai ≥ 0 ∧ f Ai < 1

assumes dependency-digraph G M F
assumes

∧
Ai. Ai ∈ A =⇒ (prob (F Ai) ≤ (f Ai) ∗

(∏ Aj ∈ (pre-digraph.neighborhood G Ai). (1 − (f Aj))))
assumes pverts G = A
shows prob (⋂ Ai ∈ A . (space M − (F Ai))) ≥
(∏ Ai ∈ A . (1 − f Ai)) and (∏ Ai ∈ A . (1 − f Ai)) > 0

There are some notable differences in the formal theo-
rem statement. Firstly, the indices of events can be any dis-
tinct set which under an arbitrary function F map to events
in the probability space (rather than just {1, . . . , 𝑛}). The
function f similarly maps the index set to the real numbers
𝑥1, . . . , 𝑥𝑛 . Maintaining the indexed notation for events using
F is important for the lemma to be easily used. While some
sources use set notation when referring to the event collec-
tion, applications of the lemma are typically to collections
with no pre-existing distinctness assumptions. Lastly, pre-
digraph.neighborhood G Ai represents the neighbourhood of
vertex Ai in G. This is an example of how local definitions
from locales can still be used outside the locale context.

5.2.1 The Helper Lemma. The paper proof of the lemma
focuses on a significant helper lemma containing most of
the proof, which the formalisation mirrors.

Lemma 5.2 (General Helper). For any 𝑆 ⊂ 1, . . . , 𝑛, |𝑆 | =
𝑠 < 𝑛 and 𝑖 ∉ 𝑆 :

P

[
𝐴𝑖 |

⋂
𝑗∈𝑆

𝐴 𝑗

]
≤ 𝑥𝑖

This is formalised in Isabelle below, requiring all assump-
tions from lovasz-local-general except for 𝐴 ≠ {}, as well as
introducing 𝑆 through new assumptions.
lemma lovasz-inductive: — (Lemma 5.2)
... ⟨All lovasz-local-general assumptions ⟩
assumes Ai-in: Ai ∈ A and S-subset: S ⊆ A − {Ai}
assumes S-nempty: S ≠ {}
assumes prob2: prob (⋂ Aj ∈ S . (space M − (F Aj))) > 0
shows P((F Ai) | (⋂ Aj ∈ S . (space M − (F Aj)))) ≤ f Ai
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The proof proceeds by induction on 𝑆 , stating the base
case as trivial, before following the proof sketch below:

1. Split 𝑆 into 𝑆1 = { 𝑗 ∈ 𝑆 |𝐴 𝑗 ∈ neighbourhood(𝐴𝑖 )},
and 𝑆2 = 𝑆 − 𝑆1, i.e. a set of events mutually indepen-
dent of 𝐴𝑖 .

2. Apply a version of Bayes rule to get the following
fraction:

P
[
𝐴𝑖 ∩

(⋂
𝑗∈𝑆1 𝐴 𝑗

)
|⋂𝑙∈𝑆2 𝐴𝑙

]
P
[⋂

𝑗∈𝑆1 𝐴 𝑗 |
⋂

𝑙∈𝑆2 𝐴𝑙

]
3. As 𝐴𝑖 is mutually independent of 𝑆2, show the numer-

ator has an upper bound of: 𝑥𝑖
∏
(𝑖, 𝑗 ) ∈𝐸 (1 − 𝑥 𝑗 ).

4. Using the induction hypothesis, show the denominator
is lower bounded by:

∏
(𝑖, 𝑗 ) ∈𝐸 (1 − 𝑥 𝑗 ).

5. The lemma statement now follows by calculation.
The universal set vs probability space challenge again

complicates the formalisation process. The textbook proof
routinely uses P(⋂ ∅) = P(Ω) = 1, whereas our formali-
sation must deal with any probabilities conditional on

⋂ ∅
separately.
Hence, we first formalise the original base case of the

lemma, showing that P(𝐴𝑖 ) ≤ 𝑥𝑖 given 𝑆 = ∅, in a separate
lemma, lovasz-inductive-base. This is a straightforward for-
malisation requiring only four Isar proof steps, and using
only four of the original general lemma assumptions.
The formalisation now proceeds with the main proof of

Lemma 5.2, which first establishes some notation. The vari-
able ?c represents a function mapping an event index to its
complement event. A local instance of the digraph locale, dg,
can also be interpreted for easy use, with an excerpt of this
part of the proof below.
interpret dg: dependency-digraph G M F

The proof requires strong induction. Rather than inducting
on the cardinality of the set 𝑆 as done on paper, the pre-
existing finite-psubset-induct rule is ideal, resulting in an
induction hypothesis which establishes the statement on any
non-empty proper subset of the set 𝑆 . Several assumptions
need to be carefully selected as induction premises. The
induction step of the formal proof is shown below:
show P(( F Ai) | (⋂ Aj ∈ S . (space M − (F Aj)))) ≤ f Ai

using finS Ai-in S-subset S-nempty prob2
proof (induct S arbitrary: Ai rule: finite-psubset-induct )
After applying induction, the formalisation mirrors step

(1) by defining 𝑆1 and 𝑆2, along with a number of useful facts
(finiteness, event subsets etc). Next, the formalisation shows
that if 𝑆1 = ∅, the proof follows from lovasz-inductive-base,
as 𝐴𝑖 is mutually independent of 𝑆2 by definition.

Assuming 𝑆1 ≠ ∅, steps (2) to (4) vary slightly depending
on if 𝑆2 = ∅ (due to the universal set challenge), requiring
slightly different lemmas to establish the fraction and to ap-
ply the conditional multiplication rule. This case split is done
on the following proof step which encapsulates the result of

steps (2) to (4), to avoid duplicated work for calculations in
step (5):
moreover have ∃ P1 P2. P(F Ai | ⋂Aj∈S. space M − F Aj) =
P1/P2 ∧ P1 ≤ prob (F Ai) ∧ P2 ≥ (∏ Aj ∈ S1 . (1 − (f Aj)))

The cases first require slightly different lemmas to estab-
lish the fraction, as per step (2). Step (3) is straightforward
in both cases in one or two formal proof steps, as it is simple
to apply the mutual independence assumption. The denomi-
nator bound in step (4) which uses the induction hypothesis
requires the most work. In both cases, the multiplication
rule for conditional probability from Sect. 3.1 can be used.
The resulting product then needs to be manipulated, as done
on paper. However, typical of a formal environment, the
calculations require more work. While some calculations
are unique, those that are shared between cases use a single
helper lemma to reduce duplication in these fiddly proofs.
From here, the formalisation completes the final calcula-

tion in step (5) using simple proof tactics.

5.2.2 Applying the helper lemma. On paper, the main
lemma typically follows directly from the helper. For exam-
ple, Alon and Spencer [3] state “The assertion of Lemma
5.1.1 now follows easily”.
However, this isn’t the case when you break the proof

down formally. In particular, to apply the helper lemma,
a further induction step on the events set is required. A
brief survey of many lecture notes on the subject appear to
routinely skip this step.
The formalisation of lovasz-local-general first establishes

as fact the required assumptions for both the base and general
version of the helper lemma, then applies the non-empty
finite set induction rule with these assumptions as induction
premises.
show prob (⋂ Ai ∈ A . (?c Ai)) ≥ (∏ Ai ∈ A . (1 − f Ai))
using assms(3) assms(1) assms(2) assms(4) general base
proof (induct A rule: finite-ne-induct)

The induction proof itself is relatively straightforward to
formalise, requiring around 15 calculational Isar proof steps
which use several of the lemmas on conditional probability
and independence from Sect. 3.1.

5.3 Corollaries and Variations
There are many various forms of the Lovász local lemma.
The simplest corollary states that the probability of none of
the events occurring is positive. This requires a one line for-
malisation following immediately from the general lemma.
The symmetric Lovász local lemma is another important

variation and has several forms. While less general, it is more
commonly used in practice.

Corollary 5.3 (The Lovász local lemma; symmetric case
[3]). Let𝐴1, . . . , 𝐴𝑛 be events in an arbitrary probability space.
Suppose that each event 𝐴𝑖 is mutually independent of a set of
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all the other events 𝐴 𝑗 but at most 𝑑 , and that the P[𝐴𝑖] ≤ 𝑝

for all 1 ≤ 𝑖 ≤ 𝑛. If 𝑒𝑝 (𝑑 + 1) ≤ 1 then P
[⋂𝑛

𝑖=1𝐴𝑖

]
> 0

One commonly seen symmetric variation in literature in-
stead retains the dependency (di)graph notation, replacing
the mutually independent set condition with one that states:
given a dependency graph 𝐷 = (𝑉 , 𝐸) where 𝑉 = {1, . . . , 𝑛},
the outdegree of each vertex is at most 𝑑 . The second sym-
metric variation further replaces the 𝑒𝑝 (𝑑 + 1) ≤ 1 condition
with 4𝑝𝑑 ≤ 1, which is a tighter bound for 𝑑 < 3.

5.3.1 The Symmetric Lemma;DependencyGraph. The
formalisation first proves the dependency graph representa-
tion of the theorem, as this is a more direct corollary of our
earlier formalisation of Theorem 5.1.
The formal proof is split into two cases depending on

whether 𝑑 = 0. According to the textbook proof by Alon
and Spencer [3], “If 𝑑 = 0, the result is trivial”. The triviality
follows from the dep-graph-indep-events lemma formalised in
the dependency graph locale in Sect. 5.1. Fromhere, a positive
probability can be established via the complete independence
bound formalised in Sect. 4.3.
The second symmetric variation with the 4𝑝𝑑 ≤ 1 condi-

tion only holds when 𝑑 > 0, often skipped over on paper.
For 𝑑 ≥ 3, the condition satisfies the original variation’s
inequality, hence the proof follows. For 𝑑 < 3, rather than
formalise a tricky inequality proof, the formalisation takes
advantage of 𝑑 being a natural number, resulting in simple
proofs for 𝑑 = 1 and 𝑑 = 2.

5.3.2 The Symmetric Lemma; Set Notation. The sym-
metric lemma in its original form (Cor. 5.3) omits any refer-
ence to a dependency graph. The mutual independence con-
dition is instead encapsulated by the following assumption:
for each event𝐴𝑖 , there exists a mutually independent subset
of the remaining events 𝐴′ such that |𝐴′ | > |𝐴| − 𝑑 − 1, i.e.
at most 𝑑 other events are not in 𝐴𝑖 ’s mutually independent
set. This single assumption replaces several assumptions on
dependency graphs from the original lovasz-local-general
theorem.
theorem lovasz-local-symmetric: — (Corollary 5.3)
fixes d :: nat
assumes A ≠ {} and F ‘ A ⊆ events and finite A
assumes

∧
Ai. Ai ∈ A =⇒ (∃ S . S ⊆ A − {Ai} ∧

card S ≥ card A − d − 1 ∧mutual-indep-events (F Ai) F S)
assumes

∧
Ai. Ai ∈ A =⇒ prob (F Ai) ≤ p

assumes exp(1)∗ p ∗ (d + 1) ≤ 1
shows prob (⋂ Ai ∈ A . (space M − (F Ai))) > 0

This follows from lovasz-local-symmetric-dep-graph, re-
quiring only two Isar proof steps. One of these steps also uses
a separate helper lemma to obtain a dependency (di)graph
satisfying the degree condition from the mutually indepen-
dent set assumption. This obtains process is typically omitted
from paper proofs, yet requires some work in a formal envi-
ronment.

lemma obtain-dependency-graph:
assumes A ≠ {} and F ‘ A ⊆ events and finite A
assumes

∧
Ai. Ai ∈ A =⇒ (∃ S . S ⊆ A − {Ai} ∧

card S ≥ card A − d − 1 ∧ mutual-indep-events (F Ai) F S)
obtains G where dependency-digraph G M F and pverts G = A

and
∧

Ai. Ai ∈ A =⇒ out-degree G Ai ≤ d

The proof of this lemma is split into two parts. Firstly, we
formalise the define-dep-graph-set lemma, which defines a
valid dependency graph𝐺 = (𝐴, 𝐸) after acquiring a function
𝑔 mapping each event (vertex) to a mutually independent
set using the mutual independence assumption. The sec-
ond part, formalises the define-dep-graph-deg-bound lemma,
which shows this same graph also satisfies the required out-
degree condition, which follows from the assumption on the
cardinality of the mutually independent set. This second con-
dition requires some careful calculations, switching between
natural numbers and integers.

The 4𝑝𝑑 ≤ 1 variation follows a very similar proof pattern,
reusing the obtain-dependency-graph lemma.

6 An Application to Hypergraph
Colourings

The probabilistic method has numerous applications. The
majority of techniques from the previous sections could be
used to prove existence properties on numerous varieties of
combinatorial structures. Hypergraph vertex colourings are
a classic example. This is an ideal test case for the formal
framework and bounding techniques as it is an accessible
and useful area of combinatorics, as well as interesting math-
ematically given the duals with Ramsey theory (using edge
colourings). Property B [3] focuses on two-colourings.

Definition 6.1 (Hypergraph Property B [3]). A hypergraph
has Property B if it is two-colourable, i.e. has a two-colouring
where no edge is monochromatic. Let𝑚(𝑛) denote the mini-
mum possible number of edges of an 𝑛-uniform hypergraph
that does not have Property B.

The probabilistic method can be used to establish existence
conditions for hypergraphs which satisfy Property B, and in
turn place bounds on𝑚(𝑛). These properties are represented
in Isabelle as follows.

abbreviation (in hypergraph) has-property-B :: bool
where has-property-B ≡ is-n-colourable 2

definition min-edges-colouring :: nat⇒ ′a itself ⇒ enat
where min-edges-colouring n - ≡
INF h ∈ ((not-col-n-uni-hyps n) :: ′a hyp-graph set) .

enat (size (hyp-edges h))

The min-edges-colouring definition uses the INF operator
over the set of all 𝑛-uniform hypergraphs, denoted by the
not-col-n-uni-hyps n definition, and returns the minimum
edge size.
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6.1 Monochromatic Edges and Independence
Basic probability properties on monochromatic edges are
essential and repetitive. Building on the example in Sect. 4.2,
these can be encapsulated in the vertex-colour-space locale.
For example, we first formalise the probability of an edge
𝑒 being monochromatic with colour 𝑐 given an 𝑛 colouring
function 𝑓 .
lemma prob-edge-colour :
assumes e ∈# E c ∈ {0..<n}
shows prob {f ∈ C𝑛 . mono-edge-col f e c} = 1/(n powi (card e))
In lecture notes, the proof of this statement is typically

either glossed over [35], or mentions that as each vertex 𝑣
clearly independently has a colour 𝑐 with probability 1/𝑛,
the independence multiplication rule can be applied.
However, this is a classic example of circular reasoning

based on real world intuition when using probability. For-
mally, events are independent only if they adhere to the
above multiplication rule. Therefore, the multiplication rule
can’t be used unless independence has previously been estab-
lished by other logical inferences. The formalisation instead
directly counts the number of colourings where an edge
is monochromatic via a helper lemma on the extensional
function set relation. The probability is then directly cal-
culated using the established uniform probability rule in
vertex-fn-space. While no longer needed, this also establishes
independence on the vertex colouring events.

It is straightforward to show that the monochromatic edge
event for a particular colour is disjoint from the same event
for a different colour. The formalisation of the probability of
an edge being monochromatic with any colour follows.
lemma prob-monochromatic-edge:
assumes e ∈# E
shows prob{f ∈ C𝑛 . mono-edge f e} = n powi (1 − int (card e))

6.2 Property B: Uniform Hypergraphs
The following basic bound on uniform hypergraphs was
proposed by Erdős in 1963. This is a classic early example of
the probabilistic method on paper. The formalisation of the
proof is intended to be a simple exemplar for how to apply
the formal probabilistic framework from Sect. 4.

Theorem 6.2 (Property B: 𝑛-uniform hypergraphs). (i) Ev-
ery 𝑛-uniform hypergraph with less than 2𝑛−1 edges has prop-
erty B. (ii) Therefore𝑚(𝑛) ≥ 2𝑛−1.

The proof on paper is relatively simple at approximately
5 lines.

In Isabelle, the proposition is located in the fin-kuniform-
hypergraph-nt locale, which sets up the 𝑛-uniform hyper-
graph. Notably, this lemma does not necessarily hold if the
graph is trivial — an assumption omitted from the original
theorem statement. By using the framework from Sect. 4,
the full formal proof requires only 11 Isar proof steps. The
formalised theorem and a condensed version of the formal
proof is given below.

proposition erdos-propertyB: — (Theorem 6.2 (i))
assumes size E < (2^(k − 1)) and k > 0
shows has-property-B
proof −
interpret P : vertex-colour-space V E 2
by unfold-locales (auto simp add: order-ge-two)
define A where A ≡(𝜆 e. {f ∈ C2 . mono-edge f e})
have (∑ e ∈ set-mset E. P .prob (A e)) < 1
⟨5-step calculation proof⟩

moreover have A ‘ (set-mset E) ⊆ P .events
unfolding A-def P .sets-eq by blast
ultimately obtain f where f ∈ C2 and f ∉

⋃ (A ‘(set-mset E))
using P .Union-bound-obtain-fun[of set-mset E A] finite-set-mset

P .space-eq by auto
thus ?thesis using event-is-proper-colouring A-def

is-n-colourable-def by auto
qed
The formal proof clearly lines up with each step of the

formal framework as well as the original proof:
1. The first step interprets the vertex-colour-space locale

to set up the probability space, in place of the paper
proof stating “Colour 𝑉 randomly by two colours”.

2. It then mirrors the paper proof and lets𝐴𝑒 be the event
that 𝑒 ∈ 𝐸 is monochromatic (i.e. defines the event to
avoid).

3. Next, the calculation step shows the sum of the prob-
abilities of the edges being monochromatic is strictly
less than one. This uses the lemma from Sect. 6.1,
which the paper proof calls on without calculation.
The calculations required in the 5-step Isar proof are
summarised by a single line in the paper proof.

4. Finally, the Union-bound-obtain-fun lemma (Sect. 4.3)
can be applied to obtain a colouring function not in the
set of all possible monochromatic edge events (com-
bining steps 3 and 4 of the framework).

From here it is also possible to formalise the second part
of Thm. 6.2 in a few lines to establish a bound on𝑚(𝑛).
corollary erdos-propertyB-min: — (Theorem 6.2 (ii))
fixes z :: ′a itself
assumes n > 0
shows (min-edges-colouring n z) ≥ 2^(n − 1)

6.3 Property B: A More General Bound
Thm. 6.2 is only for 𝑘-uniform hypergraphs, which is a no-
table restriction. The Lovász local lemma enables us to es-
tablish a bound with a much more general condition.

Theorem 6.3 (Property B). Let 𝐻 = (𝑉 , 𝐸) be a hypergraph
in which every edge has at least 𝑘 elements, and suppose that
each edge of 𝐻 intersects at most 𝑑 other edges. If 𝑒 (𝑑 + 1) ≤
2𝑘−1, then 𝐻 has property B.

The proof of this property on paper begins in the sameway
as Thm. 6.2. There is a slight alteration to the calculation of
the probability of a monochromatic edge given each edge is
of a different size. It then uses two lines to establish a mutual
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independence condition between the different edge events,
which is critical to use the Lovász local lemma. The final line
of the proof simply states that the result follows from the
symmetric Lovász local lemma, with no details on exactly
how it is applied. The paper proof totals only 5 lines. Again,
the proof also assumes a non-trivial hypergraph implicitly.

We formalised the lemma statement in the fin-hypergraph-
nt locale, which establishes a finite non-trivial hypergraph
context. The statement and step 3 of the proof is given below,
clearly showing the application of the Lovász local lemma.

proposition erdos-propertyB-LLL: — (Theorem 6.3)
assumes

∧
e. e ∈#E =⇒ card e ≥ k

assumes
∧

e . e ∈#E =⇒
size {# f ∈# (E − {#e#}) . f ∩ e ≠ {}#} ≤ d

assumes exp(1)∗(d+1) ≤ (2 powi (k − 1)) and k > 0
shows has-property-B
proof −
⟨Framework step 1 and 2⟩
. . .
let ?N = {0..<size E}
let ?p = (1/(2 powi (k−1)))
⟨Step 3: Calculate⟩
have 0 < P .prob (⋂Ai∈?N . space P .MU − Ae Ai)
proof (intro P .lovasz-local-symmetric[of ?N Ae d ?p ])
show

∧
i . i ∈ ?N =⇒ ∃ S. (S ⊆ ?N − {i} ∧

card S ≥ card ?N− d−1 ∧ P .mutual-indep-events (Ae i) Ae S)
⟨helper lemma proof⟩

show
∧

i. i ∈ ?N =⇒ P .prob(Ae i) ≤ 1/(2 powi (k−1))
using P .prob-monochromatic-edge-bound [of - k] ⟨proof⟩
show exp(1) ∗ (1 / 2 powi int (k − 1)) ∗ (d + 1) ≤ 1 ⟨proof⟩
qed (auto simp add: Ae-def E-nempty P .sets-eq P .space-eq)
⟨Step 4: obtain⟩
. . .
then show ?thesis unfolding is-n-colourable-def ⟨proof⟩

qed

The formalisation again clearly follows the framework.
Step (1) is identical, encapsulating all the shared setup be-
tween the lemmas. Step (2) similarly defines the edge event
𝐴𝑒 as before, however also uses an index function from 𝑁

to assign each edge a unique identifier for the Lovász local
lemma, shown in the proof excerpt.

The next part of the formalisation establishes the required
bound per step (3). This uses the symmetric set based Lovász
local lemma from Sect. 5.3 as an introduction rule, which
clearly structures the inner proof. Several of the resultant
goals can be discharged automatically through existing sim-
plification rules. This leaves three significant proof goals.
The second goal on the edge monochromatic probability

inequality simply reuses the previously formalised lemma
on the probability of a monochromatic edge. The third goal
on the inequality, not even mentioned in the on paper proof,
requires a single line automated tactic proof.
This leaves the mutually independent set condition goal.

Here the formalisation diverges significantly from the orig-
inal proof in [3]. Similar to the challenge on independent

events, the text appears to appeal to our physical intuition
to establish mutual independence, stating [3, p. 72]: “𝐴𝑒 is
clearly mutually independent of all the other events 𝐴𝑓 for
all edges 𝑓 that do not intersect 𝑓 .” This appeared commonly
across other sources, including [35], until eventually we un-
covered a proof in [26] which states that this calculation
follows from a theorem known as the Mutual Independence
Principle.
No proof of this general principle is given in this source

[26]. However, a proof is sketched for the lemma in this hy-
pergraph context; stating that each event 𝐴𝑒 is mutually in-
dependent of the set of events𝐴𝑓 .𝐴𝑒 ∩𝐴𝑓 = ∅. Interestingly,
this book specifically states: “The claim seems intuitively
clear, but we should take care to prove it, as looks can of-
ten be deceiving in this field”. This further motivates the
formalisation.

lemma disjoint-set-is-mutually-independent:
assumes iin: i ∈ {0..<(size E)}
assumes idffn: idf ∈ {0..<size E} →𝐸 set-mset E
assumes Aefn:

∧
i. i ∈ {0..<size E} =⇒

Ae i = {f ∈ C2 . mono-edge f (idf i)}
shows prob-space.mutual-indep-events (uniform-count-measure
(C2)) (Ae i) Ae ({j ∈{0..<(size E)} . (idf j ∩ idf i) = {}})

The formalisation of this lemma is over 100 Isar steps long,
compared to the 15 line on paper proof sketch it is based off.
The proof requires some significant manipulation of sets and
variations on set filters.

Additionally, the formalisation also needs to show that
the set {𝐴𝑓 .𝐴𝑒 ∩𝐴𝑓 = ∅} meets the required size condition.
This detail is entirely omitted from the proof in [3], however
is comparatively a rather low effort formalisation at only 6
tidy Isar proof steps in the intersect-empty-set-size lemma.

Finally, an existence lemma from the final step of the basic
framework can be used to obtain a proper colouring, from
which the result follows.

An interesting corollary from the above statement is also
included in the formalisation, showing for any 𝑘 ≥ 9, any
𝑘-uniform 𝑘-regular hypergraph 𝐻 has property B. This is
formalised in the erdos-propertyB-LLL9 lemma. The formal-
isation of this lemma requires no further probability proof
steps, only a counting lemma showing an upper bound on
the intersection number for an edge — a valuable addition
to the hypergraph library.

7 Discussion
The formalisations presented in this paper offer notable in-
sights into both the potential pitfalls of mathematical in-
tuition in probabilistic proofs, and the challenges and ad-
vantages of formalisation at the intersection of probability
and combinatorics. This section discusses key lessons learnt,
bringing together themes from throughout the paper, as well
as some related work.
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7.1 Isabelle’s Universal Set Challenge
A challenge that must be addressed specific to Isabelle is
the disparity between the probability space, Ω and the uni-
versal set, U. On paper, these two concepts are analogous
in probability theory, which specifically enables the follow-
ing calculation P(⋂ ∅) = P(U) = P(Ω) = 1. This is not the
case in Isabelle, which made the formalisation more chal-
lenging several times throughout this work. For example,
the set of all vertex colouring functions is clearly not equal
to the universal set (all functions from ′𝑎 ⇒ 𝑛𝑎𝑡 ). There-
fore, U contains elements outside the probability space, so
P(⋂ ∅) = 0.

While possible to work around, as demonstrated in Sect. 5,
the formal proofs were more complex. Another approach
which could avoid this problem, while deviating from typical
mathematical notation, would be to use the Isabelle PMF
library. A pmf can be shown to inherit from the more gen-
eral prob-space locale used in this paper. The definition also
requires that Ω = U. However ideally we could find a solu-
tion in Isabelle for the main probability library to avoid this
problem, as initial investigations indicate it is a non-issue
in other proof assistants such as Lean where the probability
space is identified with a type.

7.2 Formalising Intuition in Probability
Traditional combinatorial proof techniques such as counting
rely heavily on human intuition. It was interesting to see
how probability driven proofs relied on a different use of real-
world intuition, often skipping over proofs of certain facts
entirely. This repeatedly presented interesting formalisation
challenges throughout the paper, and great opportunities
to explore aspects of proofs that have not previously been
looked at on paper.

A key example of this is in independence proofs where cir-
cular reasoning was surprisingly common, due to proofs that
appealed to physical intuition. This intuition can perhaps be
linked back to how this concept is taught early in mathemat-
ical education. For example, the Cambridge International A
Level textbook [8, p.100] states “two events are said to be
independent if either can occur without being affected by
the occurrence of the other”. It then proceeds to give the
multiplication law for independent events, when in fact two
events are only independent if they satisfy the multiplication
law. The textbook example uses physical intuition to deduce
independence, before using the multiplication law, which
reinforces this circular reasoning.
In a formal setting, appealing to such physical intuition

is not possible. In cases where independence was not previ-
ously established (either by calculation or assumption), the
probability had to be calculated directly, which in turn re-
quired formal counting proofs. The clearest example of this
was when calculating the probability of a monochromatic
edge in Sect. 6.1. Mutually independent sets relied on similar

physical intuition in on paper proofs. This was exemplified
by the observation in Sect. 6.3 where the mutual indepen-
dence principle was seldom referred to, let alone proven. This
formalisation thus fills the significant gaps in the proof on
paper to establish mutual independence of monochromatic
non-intersecting edge events, and makes the proof easier to
find to begin with.
Another interesting aspect of intuition in probability is

how randomness is introduced, and results are obtained. On
paper, mathematicians will usually refer to natural intuition
to establish this, such as specifying individual probabilities,
rather than defining the full probability space the proof is
workingwith. This motivated the development of the general
framework to structure these steps in a formal environment.

7.3 Reusability in Formalised Mathematics
A reoccurring challenge in formalised mathematics is the
reusability of formal libraries which have been developed
with a specific application in mind, and as such can be tricky
to apply to other contexts or have significant gaps. Sect. 3
offers some examples of this in Isabelle in the context of
conditional probability.
The methods produced in this paper aim to directly ad-

dress this to minimise repeated work in formal proofs. Cen-
tral to this is the framework presented in Sect. 4.1, which
successfully minimises both the setup and conclusion of
formal probabilistic proofs. Our approach demonstrates a
new application of locales; creating a hierarchy for proof
contexts rather than structures [5, 16]. Through strategic
use of rewrites, this significantly minimised duplication be-
tween proofs on the same vertex space in Sect. 6.2 and 6.3.
By basing the hierarchy on a very general incidence system
locale — which is the basis of many combinatorial structures
— it provides numerous exemplar formal probability space
definitions which would be straightforward to apply to dif-
ferent types of structures in addition to hypergraphs. To test
this, we refactored a probabilistic proof from prior work [24]
on bipartite graphs. The framework reduced the probability
space setup required, and made several lines of proof sig-
nificantly simpler with a higher level of automation. This
additionally reinforced the power of the locale-centric ap-
proach for mathematical hierarchies [16]. Locales were easy
to use to switch between different mathematical contexts
such as probability and combinatorics, and even combine
ideas, as in the case of dependency graphs.
The framework is intended to be a guide for future for-

malisations of the probabilistic method. In addition to the
probability space set up benefits, numerous variations of
lemmas for the bounding and existence steps are included
to make it easy to apply them naturally in different contexts.
In particular, the existence lemmas to do the final step (often
omitted on paper), made it easy to move from a bound to a
proof conclusion. Mirroring the on paper environment, the
framework enables a user to focus on the middle steps of the
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formalisation which are more theorem specific. The addition
of several general bounding techniques to the framework,
such as the Lovász local lemma, can further help structure
and minimise these calculation steps, as demonstrated in
Sect. 6.

7.4 Related Work
While there are very few prior formalisations which explore
the formalisation of the probabilistic method for combina-
torics [21, 24, 28], there is notable formal work exploring
combinatorics and probability separately in different proof
assistants. These libraries include some results formalised in
Sect. 3, as previously identified.

The basic bounds presented in Sect. 4.3 are also relatively
simple concepts in probability. The union bound is also
known as Boole’s inequality, which is formalised in Coq’s
measure theory libraries [7]. Additionally, it is explored from
an entirely different angle as a basis for a program logic for-
malised in Coq [6]. While there are no clear past formalisa-
tions of the complete independence bound, it is possible there
are similar underlying concepts formalised in the extensive
Coq and HOL libraries on measure theory, that would be
easy to lift to a probability space context. The differentiating
factor in this paper remains the focus on reusability, partic-
ularly in the context of combinatorics. Both basic bounds
were formalised several ways, enabling future formal proofs
to use these properties without the need to understand the
complex underlying measure theory libraries.

Beyondmathematical formalisations, several projects have
explored the verification of random algorithms and proba-
bilistic aspects of programming. Many of the Coq references
in Sect. 3 were motivated by these types of projects. In Is-
abelle, there are several examples of probabilistic algorithms
on graphs that have been very recently formalised. This in-
cludes work on the RANKING argument [1], and expander
graphs [22]. The latter is more mathematical, and makes sev-
eral contributions to the probability libraries which could be
useful in the probabilistic method framework, however uses
PMFs. An interesting avenue for future work would be to
look at formalising a constructive proof of the Lovász local
lemma, which would likely benefit from past formalisations
of probabilistic algorithms, in comparison to the approach
presented in this paper.

8 Concluding Comments
This paper proposed a general formal framework for proofs
using the probabilistic method in combinatorics, a fascinat-
ing intersection of two mathematical fields. The framework
makes it easier to translate intuitive aspects of probability
proofs to the formal environment, while reducing duplica-
tion between proofs in the context of combinatorial struc-
tures based on incidence systems. A significant aspect of

this framework is the first formalisation of the Lovász lo-
cal lemma — a fundamental technique in probability with
wide application potential — alongside other contributions
to general libraries on probability and combinatorics which
could be used in a wide range of future work. Exploring
proofs on hypergraph colourings additionally uncovered
some fascinating discrepancies in mathematical intuition in
the probabilistic context. The formalisations are available
on the Isabelle Archive of Formal Proofs [13, 14, 17] for easy
access. The framework and all related lemmas were kept
intentionally general, opening the door to future extensions
such as further probabilistic methods, and new applications
across different combinatorial structures.
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