tantord University Libranes

Dept. of Special Colections
JC B YO

,._ﬁ

o 7605
T ST EFon el rle) (07

Avron Barr

Stanford Artificial Intelligence Luboratory November 1978
Memo AIM-317.1 | (second printing)

Computer Science Department
Report No. STAN-CS-78-675.1

TAU EPSILON CHI
A System for Technical Text

by
Donald E. Knuth

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Stanford Artificial Intelligence Laboratory November 1978
Memo AIM-317.1 (second printing)

Computer Science Department
Report No. STAN-CS-78-675

TAU EPSILON CHI, a system for technical text

© 1978 by D. E. Knuth

The author wishes o thank the many individuale who made helpful cemments on the firet drafte of this menual. Thanks are
also due to the National Bcience Feundation, for helping 40 suppert the author's rescarch under grant MOS8 T3-03TE2 ADD, and
%o IBM Corporatien for helping to defray publication sxpenscs. Bince the METATONT aystem for typefocs design ls still under
development, the sype foats used herein ere enly intial appreximations to the sventual snes.

TAU EPSILON CHI

A SYSTEM FOR TECHNICAL TEXT

GENTLE READER: This is a handbook about TEX, a new typesetting system

intended for the creation of beautiful books—and especially for books that
contain a lot of mathematics. By preparing a manuscript in TEX format, you will
be telling a computer exactly how the manuscript is to be transformed into pages
whose typographic quality is comparable to that of the world's finest printers;
yet you won't need to do much more work than would be involved if you were
simply typing the manuscript on an ordinary typewriter. In fact, your total work
will probably be significantly less, if you consider the time it ordinarily takes to
revise a typewritten manuscript, since computer text files are so easy to change
and to reprocess. (If such claims sound too good to be true, keep in mind that
they were made by TEX's designer, on a day when TiX happened to be working,
so the statements may be biased; but read on anyway.)

This manual is intended for people who have never used TiX before, as well
as for experienced TEX hackers. In other words, it's the only manual there is.
Everything you need to know about TEX is explained here somewhere, and so are
a lot of things that most users don't need to know. If you are preparing a simple
manuscript, you won't need to know much about TEX at all; on the other hand,
some things that go into the printing of technical books are inherently difficult,
and if you wish to achieve more complex effects you will want to penetrate into
some of TEX's darker corners. In order to make it passible for many types of users

2 Preface

to read this manual effectively, a special symbol is used to designate material
that is for wizards only: When the symbol

4

appears at the beginning of a paragraph, it warns of a “dangerous bend” in
the train of thought; don't read the paragraph unless you need to. Brave and
experienced drivers at the controls of TiEX will gradually enter more and more of
these hazardous areas, but for most applications the details won't matter.

All that you really need to know before reading on is how to get a file of text
into your computer using a standard editing program; this manual explains what
that file ought to look like so that TEX will understand it, but basic computer
usage is not explained here. Some previous experience with technical typing will
be quite helpful if you plan to do heavily mathematical work with TEX, although
it is not absolutely necessary. TiX will do most of the necessary formatting of
equations automatically; but users with more experience will be able to obtain
better results, since there are so many ways to deal with formulas.

Computer system manuals usually make dull reading, but take heart: This
one contains JOkEs every once in a while, so you might actually enjoy reading it.
(However, most of the jokes can only be appreciated properly if you understand
a technical point that is being made—so read carefully.)

Another somewhat unique characteristic of this manual is that it doesn't
always tell the truth. When informally introducing certain TEX concepts, general
rules will be stated, but later you will find that they aren’t strictly true. The
author fecls that this technique of deliberate lying will actually make it easier
for you to learn the concepts; once you learn a simple but false rule, it will not
be hard to supplement that rule with its exceptions.

In order to help you internalize what you're reading, occasional EXERCISES
are sprinkled through this manual. It is generally intended that every reader
should try every exercise, except those exercises which appear in the “dangerous
bend" areas. If you can't solve the problem, you can always look at the answers
that appear at the end of the manual. But please, try first to solve it by yourself;
then you'll learn more and you'll learn faster. Furthermore, if you think you do
know the answer to an exercise, you should turn to the answer pages (Appendix
A) and check it out just to make sure.

Table of Contents 3
CONTENTS
1. The name of the game 4
2. Book printing versus ordinary typing 4
3. Controlling TEX 7
4. Fonts of type 12
5. Grouping 15
6. Running TEX 18
7. How X reads what you type 28
8. The characters you type 33
9. TiX's standard roman fonts 38
10, Dimensions 40
11. Boxes 41
12, Glue 45
13. Modes 50
14, How T:X breaks paragraphs into lines 52
15. How TEX makes lists of lines into pages 57
16. Typing math formulas 80
17. More about math 84
18. Fiine points of mathematics typing 71
19. Displayed equations 91
20. Definitions (also called macros) 96
21. Making boxes 09
22. Alignment 104
23. Output routines 109
24, Summary of vertical mode 114
25. Summary of horizontal mode 121
26, Summary of math mode 130
27. Recovery from errors 138
A. Answers to all the exercises 148
B. Basic TiX format , 151
E. Example of a book format 154
F. Font tables - 168
H. Hyphenation 180
I. Index 187
S. Special notes about using T&X at Stanford 198

4 Chapter 1

<1> The name of the game

English words like “technology” stem from a Greek root beginning with the letters
TeX ...; and this same Greek word means art as well as technology. Hence the
name TEX, which is an upper-case form of 7ey.

Insiders pronounce the x of TEX as a Greek chi, not as an “x", so that TEX
rhymes with the word blecchhh. It's the “ch” sound in Scottish words like loch
or German words like ach; it's a Spanish “j" and a Russian “kh". When you say
it properly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that TEX is
primarily concerned with high-quality technical manuscripts: its emphasis is on
art and technology, as in the underlying Greek word. If you merely want to
produce passably good quality—something acceptable and basically readable but
not really beautiful—a simpler system will usually suffice. With TEX the goal is to
produce the fincst quality; this requires more attention to detail, but fortunately
it is not that much harder to go this extra distance, and you can take special
pride in the finished product,.

On the other hand you might find it more comfortable to pronounce TEX as
a Texan would and to shrug off all this high-falutin’ nonsense about beauty and
quality. Go ahead and do what you want, the computer won't mind.

<<2>> Book printing versus ordinary typing

When you first started using a computer terminal, you probably had to adjust
to the difference between the digit “1" and the lower case letter “I". When you
take the next step to the level of typography that is common in book publishing,
a few more adjustments of the same kind need to be made.

In the first place, there are two kinds of quotation marks in books, but only
one kind on the typewriter. Even on your computer terminal, which has more
characters than an ordinary typewriter, you probably have only a non-oriented
double-quote mark ("), because the standard “ascii” code for computers was not
invented with book publishing in mind. However, your terminal probably does
have two flavors of single-quote marks, namely ‘ and ', which you can get by
typing ~ and -. The second of these is useful also as an apostrophe.

To produce double-quote marks with TX, you simply type two single-quote

Book printing versus ordinary typing 5

marks of the appropriate kind. For example, to produce an output like

“I understand.” '

(including the quotation marks) you would type
**I understand.””

on your terminal.

A typewriter-like style of type will be used throughout this manual to indi-
cate TEEX constructions you might type on your terminal, so that the symbols
actually typed are readily distinguishable from the output TiX would produce
and from the comments in the manual itself. Here are the symbols to be used in

the examples:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz
0123456789"$$%4B%+—=, ., :;?!
OO "+Tde\ | /80

If these are not all on your computer terminal, do not despair; TEX can make do
with the oncs you have. One additional symbol

u

is also used to stand for a blank space, in case it is important to emphasize that
a blank space is typed; without such a symbol you would have difficulty seeing
the invisible parts of certain examples.

Another important distinction between book printing and ordinary typing is
the use of dashes, hyphens, and minus signs. In good math books, these symbols
are all different; in fact there are usually at least four different symbols in use:

a hyphen (-);

an en-dash (-);
an em-dash (—);
a minus sign (~—).

Hyphens are used for compound words like “nitty-gritty" and “Fawcett-Majors".
En-dashes are used for number ranges like “pages 13-34" and also in contexts

8 Chapter 2

like “exercise 1.2.6-52". Em-dashes are used for punctuation in sentences—they
are what we often call simply dashes. And minus signs are uscd in formulas, A
conscientious user of TEX will be careful to distinguish these four usages, and
here is how to do it:

for a hyphen, type a hyphen (-);

for an en-dash, type two hyphens (--);

for an em-dash, type three hyphens (~--);

for a minus sign, type a hyphen in mathematics mode ($-$).

(Mathematics mode occurs between dollar signs; it is discussed later, so you
needn't worry about it now.)

If you look closely at most well-printed books, you will find that certain
combinations of letters are treated as a unit. For example, this is true of the “[”
and the “i" of “find". Such combinations are called ligatures, and professional
typesetters have traditionally been trained to watch for letter pairs such as ff,
fi, f1, ffi, and £f1. (It's somewhat surprising how often these combinations
appear.) Fortunately you do not have to concern yourself with ligatures, since
TEX is perfectly capable of handling such things by itself. In fact, TEX will also
look for combinations of adjacent letters (like “A"” next to “V") that ought to be
moved closer together for better appearance; this is called kerning.

To summarize this chapter: When using TX for straight copy, you type
the copy as on an ordinary typewriter, except that you need to be careful about
quotation marks, the number 1, and various kinds of hyphens/dashes. TEX will
take care of other niceties like ligatures and kerning.

In case you necd to type quotes within quotes, for example a single quote followed

by a double quote, you can't simply type - -~ because TEX will interpret this as "’
(namely, double-quote followed by single-quote). If you have already read Chapter 5,
you might expect that the solution will be to use grouping—namely, to type something
like {°} - -. But it turns out that this doesn't produce the desired result, because there
is usually more space following a double quote than there is following a single quote:
What you get is ', which is indecd a single quote followed by a double quote (if you
look at it closely enough), but it looks almost like three equally-spaced single quotes.
On the other hand, you certainly won't want to type "L” *, because this space is much
too large—just as large as the spacc between words—and TEX might even start a new
line at such a space when making up a paragraph! There are at least two ways to solve

Controlling TEX 7

the problem, both of which involve more complicated features of TEX that we shall
study later. First, if you have a definition such as

!

\def\2{\hjust to 2pt{))}

in the format of your manuscript, you can type “\2°°. This definition puts 2 points
of blank space between the quotes, so the result is '"; you could, of course, vary the
amount of space, or define another control sequence besides \2 for this purpose. Second,
you could use the idea of “thin space” in math formulas: namely, if you type “$\,$" "
the result will be '".

@ »Exercise 2,.1: OK, now you know how to produce "’ and '"; how do you get “*
and ‘“?

<3> Controlling TEX

Your keyboard has very few kcys compared to the large number of symbols you
may want to specify. In order to make a limited keyboard sufliciently versatile,
one of the characters you can type is reserved for special use, and it is called
the escape character. Whenever you want to type something that controls the
format of your manuscript, or something that docsn't use the keyboard in the
ordinary way, you type the escape character followed by an indication of what
you want to do. ‘

You get to choose your own escape character. It can be any typeable symbol,
preferably some character found in a reasonably convenient location on your
keyboard, yet it should be a symbol that is rarcly (if ever) used in the manuscript
you are typing. For our purposes in this manual, the “backslash” character “\"
will be used as the escape in all the examples. You may wish to adopt backslash
as your personal escape symbol, but TEX doesn't have any character built in for
this purpose. In fact, TEX always takes the first nonblank character you give it
and assumes that it is to be your escape character.

Note: Some computer terminals have a key marked “ESC", but that is not
your escape character! It is a key that sends a special message to the operating
system, so don't confuse it with what this manual calls “escape”.

Immediately after typing “\" (i.e., immediately after an escape character)
you type a coded command telling TEX what you have in mind. Such commands

8 Chapter $

are called control sequences. For example, you might type
\input ms

which (as we will see later) causes TEX to begin reading a file called “ms .TEX";
the string of characters “\input" is a control sequence. Here's another example:

George P\“olya and Gabor Szeg\"o.

TEX converts this to “George Pélya and Gabor Szegs." There are two control
sequences, \ ~ and \", in this example, and they are used to indicate the special
accents.

Control sequences come in two flavors. The first kind, like \input, consists
of the escape character followed by one or more letters, followed by a space or by
something besides a letter. (TiX has to know where the control sequence ends,
so you have to put a space after a control sequence if the following character is a
letter; for example, if you type “\inputms”, TEX will interpret this as a control
sequence with seven letters.) The second variety of control sequence, like \ -,
consists of the escape character followed by a single nonletter. In this case you
don’t need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have a single symbol after the
escape.

When a space comes after a control sequence (of either kind), it is ignored
by TEX; i.e., it is not considered to be a “real” space belonging to the manuscript
being typeset. Thus, the example above could have been typed as

George P\” olya and Gabor Szeg\" o.

TEX will treat both examples the same way; it always discards spaces after control
sequences.

So the question arises, what do you do if you actually want a space to appear
after a control sequence? We will see later that TEX treats two or more consecutive
spaces as a single space, so the answer is not going to be “type two spaces.” The
correct answer is to type “escape space”, namely

\u

Controlling TEX 9

(the escape character followed by a blank space); TiEX will treat this as a space not
to be ignored. Note that escape-space is a control sequence of the second kind,
since there is a single nonletter (L) following the escape character. According to
the rules, further spaces immediately following \U will be ignored, but if you want
to enter, say, three consecutive spaces into a manuscript you can type “\UA\UAL".
Incidentally, typists are often taught to put two spaces at the ends of sentences;
but we will sce later that TEX has its own way to produce cxtra space in such
cases. Thus you needn’t be consistent in the number of spaces you type.

It is usually unnecessary for you to use “escape space”, since control sequences
aren't often necded at the ends of words. But here's an example that might shed
some light on the matter: This manual itself has been typeset by TEX, and one
of the things that occurs fairly often is the tricky logo “TEX", which requires
backspacing and lowering the E. We will scc below that it is possible for any user
to define new control sequences to stand as abbreviations of commonly occurring
constructions; and at the beginning of this manual, a special definition was made
so that the control sequence

\TEX

would produce the instructions necessary to typeset “TiX". When a phrase like

“TEX ignores spaces after control sequences.”" is to be typeset, the manuscript
renders it as follows:

\TEX\ ignores spaces after control sequences.

Notice the extra \ following \TEX; this produces the escape-space that is neces-

sary because TEX ignores spaces after control sequences. Without this extra \,
the result would have been

TEXignores spaces after control sequences.
Consider also what happens if \TEX is not followed by a space, as in
the logo ““\TEX-"~.

It would be permissible to put a blank space after the X, but not an escape
character; if the manuscript were changed to read

the logo ““\TEX\~"~

10 Chapter 8

the result would be curious indeed—can you guess it? Answer: The \ © would be
a control scquence denoting an acute accent, as in our P\ “olya cxample above;
the effect would therefore be to put an accent over the next nonblank character,
which as it happens is & single-quote mark. In other words, the result would be

the logo “TEX'

because the ligature that changes ~ - into " is not recognized.

»Exercise 3.1: State two ways to specifly the French word “mathématique”. Can
you guess how the word “centimétre” should be specified?

TEX understands almost 300 control sequences as part of its standard built-in
vocabulary, and all of these are explained in this manual somewhere. Fortunately
you won't have too much trouble learning them, since the vast majority are simply
the names of special characters used in mathematical formulas. For example,
the control sequences \Ascr, \Bscr, ..., \Zscr stand for the upper case script
letters A, B, ..., Z; and you can type “\aleph” to get R, "\doteq"” to get ==,
"\oplus" to get P, “\+" to get <, etc.

As mcntioned above, TiX can be taught to understand other control sequences
besides those in its primitive vocabulary. For example, “\TEX" is not one of
the standard control sequences; it had to be defined specially for producing this
manual. In general there will be special control sequences that define the style
of a book or a series of books: they will be used at the beginning of chapters,
or to handle special formats such as might be used in a bibliography, etc. Such
style-defining control sequences are usually defined once and for all by TEXperts
skilled in the lore of control-sequence definition, and novice TiX users don't have
to worry about the job of defining any new control sequences; the only problem
is to learn how to use somebody else's definitions. (The person who designs a
TiX style is obliged to write a supplement to this manual explaining how to use
his or her control sequences.)

In this manual we shall frequently refer to a so-called “basic TEX style”
consisting of the definitions in Appendix B, since these basic definitions have
proved to be useful for common onc-shot jobs; and since they probably also will
be included as a part of more elaborate styles. Appendix E contains an example
of a more elaborate style, namely the definitions used to typeset D. E. Knuth's
series of books on The Art of Computer Programming. There's no need for you
to look at these appendices now, they are included only for reference purposes.

Controlling TEX 11

The main point of these remarks, as far as novice TiX uscrs are concerned,
is that it is indeed possible to define nonstandard TEX control scquences, but it
can be tricky. You can safely rely on the standard control sequences, and on
the basic extensions defined in Appendix B (which will be explained later in this
manual), until you become an experienced TiXnical typist.

Those of you who wish to define control sequences should know that TiX has

further rules about them, namely that many different spellings of the same con-
trol sequence may be possible. This fact allows TjX to handle control sequences quite
efliciently; and TEX's usefulness is not seriously affected, because new control sequences
aren’t needed very often. A control sequence of the first kind (i.c., one consisting of
letters only) may involve both upper case and lower case letters, but the distinction
between cases is ignored after the first letter. Thus \TEX could also be typed “\TEx" or
“\TeX” or “\Tex"—each of these four has the same meaning and the same effect. But
“\tex” would not be the same, because there is a case distinction on the first letter.
(Typing “\gamma" results in ¥, but “\Gamma" or “\GAMMA" results in T.)

Another rule takes over when there are seven or more letters after the escape: all

letters after the seventh are replaced by “x”, and then groups of cight letters are
removed if necessary until at most 14 lctters are left. Thus \underline is the same
as \undarlixx; and it is also the same as \underlinedsymbols or any other control
sequence that starts with \u followed by n or N, then d or D, then o or E, then r or R,
then 1 or L, then 1 or I, then 2 or 10 or 18 or 26 or - - - letters. But \underl i ne is not
the same as \undarlines, becausc these two control sequences don't have the same
length modulo 8.

As a consequence of these rules, there are 128 essentially distinct control sequences

of length two—namely, escape followed by any 7-bit character, whether a letter or
not. Therc are 52 X 26 essentially distinct control sequences of length three, because
there are 26 + 26 = 52 choices for the first letter following the escape and 26 different
choices for the second letter; there are 52 X 26 X 26 essentially distinct control sequences
of length four, 52 X 26 X 26 X 26 of length five, 52 X 26 X 26 X 26 X 26 of length six,
52 %26 X 26 X 26 X 26 X 26 of length seven. There are 52 X 26 X 26 X 26 X 26 X 26 X 26
essentially distinct control sequences of length 8 plus a multiple of 8, and the same

number holds for length 9 plus a multiple of 8, .. ., length 15 plus a multiple of 8. Thus
the total number of distinct control sequences available is exactly

128 52 - 26 - 52 - 26% 4- 52 26+ 52264 52.26° +8.52-26% = 129151507704;

that should be enough. Even though TEX accepts alternative spellings, you should be

consistent in each manuscript, since some implementations of TEX may not be exactly
the same in this respect.

12 Chapter 8

Nonprinting control characters like {carriage-return) might follow an escape charac-

ter, and these lead to distinct control sequences according to the rules. Initially
TEX is set up to treat \(tab) and \(line-feed) and \{vertical-tab) and \{form-feed) and
\{carriage-return) the same as \LJ (escape space); it is reccommended that none of these
six control sequences be redefined.

< 4> Fonts of type

Occasionally you will want to change from one typeface to another, for example
if you wish to be bold or to emphasize somcthing. TEX deals with sets of 128
characters called “fonts” of type, and the control sequence \: is used to select
a particular font. If, for example, fonts n, b, and s have been predefined to
represent normal, bold, and slanted styles of type, you might specify the last few
words of the first sentence of this paragraph in the following way:

to be \:b bold \:n or to \:s emphasize \:n something.

(Blank spaces after font codes like b are ignored by TEX just like the spaces after
control sequences; furthermore, since a font code is always of length 1, you don't
need a space after it. Thus, \ :bbold would be treated the same as \ : UblLiibold.
It is probably best to type a space after the font codes, even though you don’t
really need one, for the sake of readability.)

You probably will never* use the \ : sequence yourself, since the predesigned
format you are using usually includes special control sequences that give symbolic
names to the fonts. For example, the “basic TEX format” in Appendix B defines
three control sequences for this purpose.

\rm switches to the normal "Roman" typeface: Roman
\s1 switches to a slantcd typeface: Slanted
\bf switches to a boldface style: Bold

With such a system, you can type the above example as

to be \bf bold \rm or to \sl emphasize \rm something.

*Well..., hardly ever.

Fonts of type . 13

The advantage of such control sequences is that you can use the same abbrevia-
tions \rm, \s1, \bf in any sizc of type, although diffcrent font codes are actually
used for different sizes. For example, fonts a, n, q might be the normal, slanted,
and bold fonts in a standard “10-point” size of type, while ¢, p, s might be the
corresponding fonts in a smaller “8-point” size. It would be difficult to remember
how the codes change in diflerent sizes. So the Art of Computer Programming
book design in Appendix E allows you to say

\tenpoint

whenever you are beginning to type material that belongs in 10-point size, after
which \rm will be equivalent to \:a, and \sl will be equivalent to \:n, etc.
Now if you switch to 8-point size (in a footnote, say) the instruction

\eightpoint

(which appcars in the \footnote format) will cause \s1 to be equivalent to \ : p.
All you need to remember is the abbreviations \rm, \s1, and \bf regardless of
what type size you are using.

There actually is a better way yet to handle the above example, using TEX's
“grouping” feature, which we shall discuss in the next chapter. With this feature
you would type

to be {\bf bold} or to {\sl emphasize} something.

As we will see, switching fonts within { and } does not affect the fonts outside,
so you don’t need to say explicitly that you are returning to \rm in this scheme.

Thus, you can pretty much forget about the other ways we have been discussing
for font switching; it's best to use grouping.

When you do use the \: instruction to change fonts, here are the rules you need
to know. TEX can handle up to 32 different fonts in any particular job {counting
different sizes of the same style). These 32 fonts are distinguished by the least significant
five bits of the 7-bit ascii character code you type following “\ :*; if you don’t understand

14 Chapter 4

what this mcans, use the following code namcs for your fonts:

Internal ~ TEX Internal TEX Internal TEX Internal TEX

font font font font font font font font
number code number code number code number code
1 eor " 9 Horh 17 Porp 25 X or x
2 Aora 10 Iori 18 Qorgq 26 Yory
3 Borb 11 Jor 19 Rorr 27 Zorg
4 Corc 12 Kor k 20 Bors 28 [or;
5 Dord 13 Lorl 21 Tort 29 <org
6 Eore 14 Norm 22 Uoru 30 Jor=
7 Fort 15 Norn 23 Vorv 31 >ort
8 Gorg 16 Ooro 24 Worw 32 ? OT «

You never refer to a font by its number, always by its code. Code A is treated the
same as a, etc.; but a wise typist will consistently use the same codes in any particular
manuscript, because later TicXcs may allow more than 32 fonts.

Of course TEX can make use of hundreds of different fonts in different jobs. The

32-font restriction applies only within a particular job, because TEX doesn’t want
to keep the dctails about more than 32 X 128 = 4096 characters in its memory at once;
there isn't enough room. Thus the internal font codes will refer, in general, to different
“real” fonts. The first time you use a font code, you must define it by giving the full
name of the font in the system’s collection, For example, when the basic TEX format
in Appendix B says

\:a=cmri0

this sclects font code a and defines it to be the systcm’s font “cmr10”, an abbreviation
for “Computer Modern Roman 10 point”. The rule for defining a font is that the font
code (a in this example) must be followed immediately by “=" or “+” (not a space)
when it first appears, and this must be followed immediately by the system name of

the font file; then comes a blank space to denote the end of the font file name.

Once a font code is defined, it can never be redefined again. Thus if you type, say,

“\:a=cmr10” when font code a has alrecady been defined, the characters “=emr10”
will be treated as part of your manuscript, and they will dutifully be set into type (in
font a). It's best to define all your fonts in format specifications at the very beginning
of your input.

When you change fonts within a line, TEX will line the letters up according
to their “baselines." For example, suppose that font codes a, b, ¢, d, e, f refer

Grouping 15

respectively to 10-point, 9-point, 8point, 7-point, 8-point, and 5-point roman
fonts; then if you type "

\:a smaller \:b and smaller \:c and smaller
\:d and smaller \:e and smaller \:f and smaller \:a

the result is smaller and smaller and smaller and smaller and smalier and smetter. Of coUrse
this is something authors don't do very often at the moment, because printers
can't do such things easily with traditional lead types. Perhaps poets who wish to
speak in a sinsmen voice Will cause future books to make use of frequent font variations,
but nowadays it's only an occasional font freak qixe the suthor of thie manvat) Who likes
it. One should not get too carried away by the prospect of font switching unless
there is good reason.

»Exercise 4.1: Explain how to type the bibliographic reference “Ulrich Dieter,
Journal fiir die reine und angewandte Mathematik 201 (1958), 37-70."

<5> Grouping

Every once in a while it is necessary to treat part of a manuscript as a unit, so
you need to indicate in some fashion where that part begins and ends. For this
purpose TiX gives special interpretation to two “grouping characters” (just as it
treats the escape character in a special way). We shall assume in this manual
that { and } are the grouping characters, although any other typeable characters
may be reserved for this function.

We saw one example of grouping in the previous chapter, where it was pointed
out that font changes inside a group do not affect the fonts in force outside.
This gives the effect of what computer scientists call “block structure.” Another
example of grouping occurs when you are using certain control sequences; for
example, if you want to center something on a line You can type

\ctrline{This information will be centered.}

using the control sequence \ctrline defined in basic TiX format (Appendix B).

Grouping is used in quite a few of TiX's more complex instructions, although
it is largely unnecessary in simple manuscripts. Here's an example of a slightly
more complex case, the definition of a new control sequence \rm as mentioned

16 Chapter 5

in the previous chapter:

\def\rm{\:a}

This means that control sequence \ rm is henceforth to be replaced in the input by
the control sequence \: followed by a. One can also have groups within groups,

e.g.
\def\tenpoint{\def\rm{\:a>\def\sl{\:n>\def\bf{\:q}}

which means that the control sequence \tenpoint is henceforth to be replaced
in the input by

\def\rm{\:a}\def\s1{\:n}\def\bf{\:q}

and these, in turn, describe replacements for the control sequences \rm, \s1, and
\bf. If you are a novice TEX user, you will probably not be using \def yourself
to define control sequences; the point of this example is merely to demonstrate
that groups can indeed arise within groups.

Groups within groups will happen only in rather complicated situations, but in

such cases it is extremely important that you don’t leave out a { or a }, lest TEX
get hopelessly confused. For example, the \output routine in Appendix E has as many
as five levels of groups within groups within ...; although each level is fairly simple by
itself, the total cumulative effect can boggle the mind, so the author had to try three
times before getting the {'s and }'s right. In such situations there is a handy rule for
figuring out which { goes with which }, and whether or not you have forgotten any
braces. Start with a mental count of zero, and go from left to right in your TEX input.
When you get to a {, add one to the count, and write the resulting number lightly
above the {. When you get to a }, write the current count lightly above it and then
subtract one from the count. For example,

1 2 2 2 3 3 3 3 2 2 2 1
N CTEE GTUS JUOR IR GTUS DR SUN TN TN SIS JUU S
Currentcount: 0 1 2 1 2 3 2 3 2 1 2 1 o0

If the input is properly grouped, your count will return to zero, and it will never become
less than zero. The { corresponding to any particular } is the nearest preceding { having
the same number as the }. (You neced not apply this procedure to the entire input
manuscript, just to any part that is supposed to be understood as a unit. For example,
you can apply this procedure to the right-hand side of any definition that uses \de?.)

Grouping 17

Suppose that you had typed
\ctrline{This information will be {\sl centerbed}.}

Then you would have gotten
This information will be centered.

Now suppose that you type

\ctrline{This information will be {centered}.}

What do you think will happen? Answer: you will get

This information will be centered.

The result looks just as if those innermost braces had not appcared at all, because
you haven't used the grouping to change fonts or anything. T:X doesn't mind if
you want to waste your time making groups for no reason.

Actually there is a reason why you might want to use grouping without font
changes, etc., namely when you want to make sure that spacing comes out right.
In Chapter 3 we discussed the control sequence \TEX that the author of this
manual has used to get the logo “TjX", and we observed that the space after \TEX
is ignored since \TEX is a control scquence. Thus it was apparently necessary to
type “\TEX\UL" when there was supposed to be a space following “TEX", but it
was a mistake to type “\TEX\" when the next character was to be a punctuation
mark or something else besides a space. Well, in all cases it would be correct to type

{\TEX}

whether or not the following character is a space, because the } stops TEX from
looking for the optional space after \TEX. This might come in handy when you're

using a text editor (e.g., when replacing all occurrences of a particular word by
a control sequence). Anophcr thing you could do is type

\TEX{}

using an empty group for th'e same purpose: the {) here is a group of no charac-
ters, so it produces no output, but it does have the effect of shutting off TEX's
scan for blanks.

»Exercise 5.1: Suppose you want to specify two hyphens in a row; you can't type
‘~~" because TEX will read that as an en-dash, so what can you do?

18 Chapter 5

When TiX starts any job, all characters are alike; there is no escape character,

and there are no grouping characters. TEX automatically makes the first nonblank
input character the escape, but if a manuscript is going to use grouping, the grouping
characters must be “turned on.” The basic format in Appendix B docs this, and you can
do it yourself in the following way: Type “\chcode{number)+1" for the left delimiter
and “\chcode{number)«2" for the right delimiter, where {number) is the numeric value
of the 7-bit code for the desired character. For example, “{” and “}” have the respective
codes “173 and 176 at Stanford—this is a local deviation from some ascii codes at
other places—so the instructions

\chcoda“173«1 \chcoda 1762

appear among the basic format definitions in Appendix B. (Numbecrs beginning with
* are in octal notation, cf. Chapter 8.) It is possible to have several characters simul-
taneously serving as group delimiters, simply by using \chcode to specify each of them.

Font changes are not the only things that “stay inside” a group without affecting the

text outside. This same localization applies to any control sequences defined within
the group (exccpt thosc using \gdef in place of \def); to glue-spacing parameters such
as those set by \baselineskip and \tabskip; to TEX control parameters such as those
set by \trace and \jpar; and to the character interpretations sct by \chcoda. But
localization docs not apply to definitions of \output routines, or to the size parameters
set by \hsize, \veize, \parindent, \maxdepth, and \topbaseline. Furthermore,
if you type “{\:a=cmr102}”, the “emr10” part of this font definition still is irrevocably
tied to code a.

»Exercise 5.2: Would \def\rm{{\:a)} have the same effect as the definition
\daef\rm{\:a}? (The only difference is an extra level of grouping.)

@ »Exercise 5.3: Suppose \chcode“74+1 \chcode”76«2 appcars near the begin-
ning of a group that begins with {; these specifications instruct TEX to treat < and
> as group delimiters. According to the rules above, the characters < and > will revert
to their previous meaning when the group ends; but should the group end with ¥ or with >?

<6> Running TEX

The best way to learn how to do something is to do it, and the best way to
learn how to use TEX is to use it. Thus, it's high time for you to sit down at a
computer terminal and interact with the TEX system, trying things out to see

Running TEX 19

what happens. Here are some small but complete examples suggested for your
first encounter. The examples are presented in terms of the Stanford WAITS
system; slightly different conventions may be in use at other installations.

Caution: This chapter is rather a long one. Why don't you stop reading now,
and come back to this tomorrow?

OK, let's suppose that you're rested and excited about having a trial run of
TEX. Step-by-step instructions for using it appear in this chapter. First do this:
Go to the lab where the graphic output device is, since you will be wanting to
see the output that you get—it won't really be satisfactory to generate new copy
with TEX from a remote location. Then log in; and when the operating system
types “." at you, type back

r tex

(followed by {(carriage-return)). This causes TEX to start up, and when it is ready
it will type “»". Now type

\input basic

and (cdrriage-return); this causes the basic TiX format of Appendix B to be read
into the system. TEX will type

(basic.TEX 1 2 3 4)

on your terminal as it is processing this material, meaning that it has read pages
1, 2, 3, and 4 of this file. Then it types “x", waiting for more input. At this point -
the \rm font has been selected, which is the “normal” e¢mrl0 font, and TEX is
ready to accept an input manuscript using the basic conventions.

Now type several more lines, each followed by (carriage-return):

\hsize 2 in

\vskip 1 in
‘\ctrline{MY STORY}

\vskip 38 pt

\ctrline{\sl by A. U. Thor}
\vskip 2.54 cm

20 Chapter 6

Once upon a time, in a distant
galaxy called \error \"O\"o\c c,
there lived a computer

named R. J. Drofnats. \par

Mr. Drofnate-~--or “*R. J.,”” as
he preferred to be called---
was lousy at typesetting, but he
had other nice qualities. For
example, he gave error messages
when a typist forgot to end a paragraph
properly. \end

\par\vfill\end

This example is a bit long, and more than a bit silly, but it's no trick for a good
typist like you and it will give you some worthwhile experience, so please do it.
For your own good.

Incidentally, the example introduces & few more features that you might as
well lcarn as you are typing, so it's probably best for you to type a line, then
read the explanation that appears below, then type the next line and so on.

The instruction “\hsize 2 in" says that rather narrow lines will be set,
only 2 inches wide. (On a low-resolution device like the XGP currently used at
Stanford, “2 in" really means about 2.6 inches, because TiX expects that its
output on such devices will be used only for proofreading, or that the output will
be reduced to about 77% of its physical size before actual printing. The 10-point
type cmrl0 will actually appear to be essentially the same size as 13-point type
in books; in other words, you should expect to see output “larger than life.")

The instruction “\vskip 1 in" mcans a vertical skip of one inch. (Really
1.3 inches, on an XGP or VERSATEC, but from now on we won't mention
this expansion.) Then the instruction “\ctrline{MY STORY}" causes a line
of type that says “MY STORY" to be centered in the 2-inch column. (Recall
from Chapter 5 that TEX's basic formats, which we loaded by typing “\input
basic”, include this \ctrline and grouping facility for centering things.)

The instruction “\vskip 36 pt" is another vertical skip, this time by the
amount 36 points—which is a printer's measure slightly less than half an inch.
Book measurements have traditionally been specified in units of picas and points,
and TEX does not want to shake printers up too badly, so it allows a variety of

Running TEX 21

different units of length to be specified.

The instruction “\ctrline{\sl by A. U. Thor)}" makes, another cen-
tered line, this time in the slanted 10-point font (because of the \s1). This \s1
is inside a group, so it doesn't affect the type style being uscd elsewhere.

You can probably guess what “\vskip 2.54 cm" mcans; or aren't you
ready for the metric system yet? It turns out that 2.54 centimcters is exactly one
inch.

The next line begins the straight text, which is what you will be typing most
of the time; don’t be dismayed by the messy spacing instruciions like \vskip
that you have been typing so far. Something messy like that is expected at the
beginning of a manuscript, but it doesn't last long. When TEX begins to read the
words

Once upon a time, in a distant

it starts up a new paragraph. Now comes the good news, if you haven't used
computer typesetting before: You don't have to worry about where to break lines
in the paragraph, TiX will do that for you. You can type long lincs or short lines,
it doesn't matter; every time you hit (carr:agc-return) it is csscntially the same
as typing a space. When TEX has read the entire paragraph, it will try to break
up the text so that each line of output, except the last, contains about the same

amount of copy; and it will hyphenate words if necessary (but only as a last resort).
After you type in the next input line,

galaxy called \error \"O\"o\c c,

something new will happen: TgX will type back an error message, saying
! Undefined control sequence.
(%) galaxy called \error

\"0\"o\¢ ¢,
T

What docs this mean? It means, as you might guess, that an undefined control
sequence was found in the input. TEX shows how far it has read your input by
displaying it in two lmcs, the first line shows what has been rcad before the error
was detected (namely “galaxylical ledli\error ") and the next line shows
what TEX hasn't looked at yet but will see next. So it is plain that “\error"
is the culprit; it is a control scquence that hasn't been dcﬁncd After an error
message, all is not lost, you have several optlons '

e

22 Chapter 8

(1) Type (line-feed). This will cause future error messages to be printed on
your terminal as usual, but TiX will always proceed immediately without waiting
for your response. It is a fast, but somewhat dangerous, way to proceed.

(2) Type “x" or “X". This will cause TEX to stop right then and there, but
you will be able to print any pages that have been completed.

(3) Type “e" or “E". This will tcrminate TEX and activate the system editor,
allowing you to edit the input file that TEX is currently reading from, if any.

{(4) Type “i” or “I1". This will cause TEX to prompt you (with “x") for text
to be inserted at the current place in the input; TEX will go on to read this new
text before looking at what it ordinarily would have rcad next. You can often
use this option to fix up the error. For example, if you have misspelled a control
sequence, you can simply insert the correct spelling. (The (carriage-return) that
you type after an insertion does not count as a space in the inscrted text.)

(5) Type (carriage-return). This is what you should do now. It causes TEX
to resume its processing.

(8) Type a number (1 to 9). TEX will delete this many tokens from the input
that it ordinarily would have read next, and then it will come back asking you to
choose one of these options again. (A “token” is a single character or a control
sequence. In certain rare circumstances TEX will not carry out the deletions, but
you probably will never run into such cases.)

(7) Type “?" or anything else. Then TEX will refresh your memory about
options (1) to (6), and will wait again for you to exercise one of these options.

If you respond by (carriage-return) or (line-feed) or “i" or “I", TEX tries to
recover from the error as best it can before carrying on. For example, TEX simply
‘ignores an undefined control sequence like \error. If the error message is '

! Missing } inserted.

TEX has inserted a } which it has reason to believe was missing. Chapter 27
discusses error messages and appropriate recovery procedures in further detail.
OK, you were supposed to type this line containing an \error so that you
could experience the way TiX somctimes complains at you. Similar incidents
will probably happen again, since TEX is constantly on the lookout for mistakes.
The program tries to be a helpful and constructive critic, to catch errors before

Running TEX 23

they lead to catastrophes. But sometimes, like all programs, it really doesn’t
understand what's going on, so you have to humor it a bit.]

On the remainder of the \error line you will note the strange concoction
\"0\"o\c ¢

and you already know that * stands for an umlaut accent. The \c stands for
a “cedilla” accent, so you will get

63(;
as the name of that distant galaxy.

The next two lines are very simple, except that we haven't cncountered \par
before. This is one of the ways to end a paragraph. (Another way is to have
a complctely blank line. A third way is to come to the end of a file-page in an
input file.)

The following lines of the examplc arc also quite straightforward; they provide
a review of the conventions we discussed long ago for dashes and quotation marks.

But when you type “\end" in the position shown, you will get another error
message. The \end instruction is the normal way to stop TEX, but it has to occur
at a proper time: not in mid-paragraph. The error message you get this time is

! You can't do that in horizontal mode.

As we will see later, TEX gets into various “modes,"” and it is in “horizontal mode”
when it is making a paragraph. If you try to do something that is incompatible
with the currcnt mode, you will get this sort of error message. The proper response

here is, once again, to hit {carriage-return); TX will resume and forget that you
said \end when you shouldn't.

The final line of the example says \par (to end the paragraph and get you
out of horizontal mode), then it says

\vfill

(which mcans vertical fill—it will inscrt as much space as necessary to fill up the
current page), then it says

\end

24 Chapter 6

and now TEX will end its processing gracefully. An “xspool” command will
appear on your terminal; just hit {carriage-return) and the XGP will print your
output. (At least, this is what will happen if you are at Stanford using the WAITS
system.)

The output corresponding to the above example will not be shown in this
manual; you'll have to do the experiment personally in order to see what happens.

At this point you might also like to look at the file called ERRORS.TMP on
Your area, since it records the error messages that TEX typed back at you. Say
“type errors.tmp” to the operating system.

»Exercise 8.1: If you had typed the second line of the story as
galaxy called \"O\"o\cc,

TEX would have issucd an error message saying that the control sequence \cc is
undefined. What is the best way to recover from this error?

That was Experiment Number 1, and you're ready for Experiment Number
2—after which you will be nearly ready to go on to the preparation of large
manuscripts. :

For Experiment 2, prepare a file called STORY . TEX that contains all the lines
of the above example from “\vskip 1 in" to “\par\vfill\end" inclusive;
but change the last line to

\par\vfill\eject

instead. (The \eject instruction is something like \end; it ends a page, but
not the whole job.) Note that the line that specifies \hsize is to be omitted
from your STORY file; the reason is that we are going to try typesetting the same
story with a variety of column widths.

Start TEX again (r tex), and \input basic again. But now type

\hsize 4 in
\input story

and see what happens. Guess what: TEX is now going to set 4-inch columns, and
it is going to read your STORY.TEX file.

Running TEX 25

Again it is going to hiccup on the undefined control sequence \error. This
time try typing “e", so you can scc how to get right to the system file editor
from TEX in case your file is messed up. Delete the offending \error from the
file, then start TX off from scratch again.

Now try typing several instructions on the same line:
\input basic\hsize 4in\input story

If you don’t put a blank space after the ¢ of basic here, you'll get an error
message (a file name should be followed by a blank space), but in this case it's safe
to hit (carriage-return) and continuc. (TEX is just warning you that something
may have been amiss; the rule is that a space should be there, but it will be
inserted if you proceed. From now on, always leave a space after file names, to
avoid any hassle.) |

Soon TEX will be reading your story file again—and it will hang up on the
\end error. Instcad of removing this error, just type (linc-feed) since you know
it is harmless to bypass this error.

When TiX asks for more input, type the following lines, one at a time:

\hsize 3in \input story
\hsize 1.5in \input story
\jpar 1000 \input story
\ragged 1000 \input story
\hsize 1 in \input story
\end

The results will be somewhat interesting, so try it!

If you have followed instructions, your output will consist of six pages; the
first page has MY STORY sct 4 inches wide, the next has it set 3 inches wide,
then come three pages where it is set 1% inches wide, and a final page where
TEX tries to make l-inch columns. Since l-inch columns of 10-point type allow
only about 15 characters per line, the last four pages put quite a strain on TEX's
ability to break paragraphs up into attractive lines.

When TiX fails to find a good way to handle a paragraph, there usually is no
good way (except that TEX doesn't know how to hyphenatc all words). In such
cases the symptom is that TiEX reports an “overfull box,” and lines that are too

26 Chapter 6

long will appear in the output. You probably noticed such a complaint about
overfull boxes when TEX was first trying to sct the story with 1.5 inch columns.
(If you didn't notice it on your terminal, look at errors.tmp to refresh your
memory.) Scvcral lines on page 3 of your output will be more than 1.5 inches
long—they are “overfull” and stick out like sore thumbs.

There are two remedies for overfull boxes: You can either rewrite the text of
the manuscript to avoid the problem (in fact, careful authors often do just that),
or you can tell TEX to consider larger spaces acceptable. The instruction \ jpar
1000 essentially makes TiX look for more ways to break the paragraph, including
those with larger spaces; so the fourth page of the output shows a solution of the
problem without any overfull boxes.

The expandability of spacesis dcfined by the font, not by TEX. Standard TiEX fonts

likc cmrl0 have fairly tight restrictions on spacing, in accordancc with the recom-
mendations of contemporary typographers. These strict standards are appropriate for
books, but not for newspapcers, when more tolerance is needed. If you are setting a lot
of matcrial with narrow margins, it would be better to use a font with more variability
in its spacing than to use a high setting of \ jpar, since TEX has to work harder when
\jpar is large (it considers more possibilities). Chapter 14 explains more about \ jpar.

The instruction \ragged 1000 causcs paragraphs to be set with a ‘ragged right
margin” —I.e., the lines are broken as usual, but spaces between words don't stretch
or shrink very much. Chapter 14 tells more about \raggedness.

When \hsize was one inch in the above experiment, TiEX again came up with an

overfull box, even when \jpar was quite large. The reason is that TEX doesn’t
know how to hyphenate “Drofnats”, the second word of the second paragraph. To
remedy this, replace “Drofnats” by “Drof\-nats” in both places where it occurs in
your story file, and try setting the story with

\heize 1 in \jpar 1000 \ragged O

You'll sce that the output is now quite reasonable, considering the extremely narrow
column width. The control sequence \~ means a discretionary hyphen, namely a legal
place to hyphenate the word if TEX needs to.

At this point you might want to play around with TX a bit before you read
further. Try different stories, diffcrent measurements, and so on. One experiment
particularly recommended is to type

\ctrline{MY \ERROR STORY}

Running TEX 27

after basic has been \input. This produces a somewhat more elaborate error
message with which you should become acquainted, namely:
! Undefined control sequence.
<argument> MY \Error

STORY
plusiO00cm minusiO00cm #1

\hskip Opt plusi00Ocm minu..
(%) \ctrline{MY \ERROR STORY}

The reason for all this is that \ctrline is not a built-in X instruction, it is
a control sequence defined in the basic format. Thus TEX did not detect any
mistake when it read “{MY \ERROR STORY}", it simply absorbed this group
and passed the text “MY \ERROR STORY" as an argument to the \ctrline
definition. According to Appendix B, \ctrline gets expanded into the text

\hjust to size{\hskipOpt plusi000cm minusi000cm
#1\hskipOpt plus1000cm minusi000cm}

where the argument gets inserted in place of the “#1"”. (You don't have to un-
derstand cxactly what this means, just believe that it is a way to center something
on a line.) A fragment of this expansion is shown in the error message, preceded
and followed by “..." to indicate that there was more to the expansion TEX
was reading. The error message shows that TEX had read the expansion up to
the point “#1", because \hskip etc. appears on the next line. Furthermore the
error message shows that TiX was reading the argument, and the last thing it
read was the control sequence “\Error". (You actually typed “\ERROR", but
upper case and lower case are not distinguished by TEX after the first letter of a
control sequence.)

The point is that when you make an error within a routine controlled by a
defined control sequence like \ctrline, the error message will show everything
TEX knows about what it was reading; the display occurs in groups of two lines
per level of reading, where the first line shows what TFX has rcad at this level
and the second line shows what is yet to be read. Somewhere in there you should
be able to spot the problem, the thing TEX wasn't expecting.

Carcful study of the 1.5-inch example shows that Tj:X does not automatically break

lines just before a dash, although it does do so just after one. Some printers will

start new lincs with dashes; if you really want to do this you can type “\penalty 0"
just before each dash. For example, “Drofnats\penalty o——-".

28 Chapter 7

< 7> How TEX reads what you type

While studying the example in the previous chapter, we observed that an input
manuscript is expressed in terms of “lines" ending with (carriage-return)s, but
these lines of input are essentially independent of the lines of output that will
appear on the finished pages. Thus you can stop typing a linc of input at any
convenient place. A few other related rules have also been mentioned:

e A {carriage-return) is like a space.
e Two spaces in a row count as one space.
e A blank line denotes end of paragraph.

Strictly speaking, these rules are contradictory: A blank line is obtained by typing
(carriage-return) twice in a row, and this is different from typing two spaces in
a row. So now let's sce what the rcal rules are. The purpose of this chapter is to
study the very first stage in the transition from input to output.

In the first place, it's wise to have a precise idea of what your keyboard sends
to the machine. There are 128 characters that TjgX might encounter at each step
in a file or in a line of text typed directly on your terminal. These 128 characters
are classified into 13 categories numbered 0 to 12:

Category code Meaning
0 Escape character (\ in this manual)
1 Beginning of group ({ in this manual)
2 End of group (¥ in this manual)
3 Begin or end math ($ in this manual)
4 Alignment tab (® in this manual)
5 End of line ((carriage-return) and % in this manual)
6 Parameter (# in this manual)
7 Superscript (T in this manual)
8 Subscript (4 in this manual)
9 Ignored character
10 Space _
11 Letter (A,...,Zand a, ..., z)
12 Other character

It's not necessary for you to learn these code numbers; the point is only that
TEX responds to 13 different types of characters. At first this manual led you to

How TEX reads what you type 29

believe that there were just two types—the escape character and the others—
and more recently you were told about two more types, the grouping symbols
like { and }. Now you know that there are really 13. This is the whole truth of
the matter; no more types remain to be revealed.

Actually no characters are defined to be of types 0 to 8 when TEX begins,
except that (carriage-return) and {form-feed) are type 5. But if you are using a
predefined format (like almost everybody does) you will be told which characters
have special significance. For example, if you are using the basic package of
Appendix B you need to know that the nine characters

N) $ ¢ % ¢ 1 L

cannot be used as ordinary characters in your text; they have special meaning.
(If you really need any of these symbols as part of what you're typing, e.g., if you
need a $ to represent dollars, there is a way out—this will be explained later. A
list of control sequences for special symbols appears in Appendix F.)

When TEX is rcading a line of text from a file, or a line of text that you
entered directly on your terminal, it is in one of three “siates”:

State N Beginning a new line
State M Middle of a line
State S Skipping blanks

At the beginning it's in state N, but most of the time it's in state M, and after
a control scquence or a space it's in state S. Incidentally, “statcs” are different
from the “modes” mentioned in Chapter 6; the current state refers to TeX's eyes
and mouth as they take in characters of new text, but the current mode refers
to the condition of TEX's gastro-intestinal tract. Modes are discussed further in
Chapter 13. ‘

You hardly ever need to worry about what state TEX is in, but you may
want to understand the rules just in case TX does something uncxpected to your
input file. In general, it is nice to understand who you are talking to.

Furthermore, if you faithfully carricd out the experiment in the previous
chapter you will probably have noticed that there was an unwanted space after
the dash in “called-—-"; the (carriage-return) after this dash got changed into
a space that doesn't belong there. This error was purposely put into the example

30 Chapter 7

because the author of this manual feels that we learn best by making mistakes.
But now lct's look closely into TjiX's reading rules so that such mistakes will be
unlearned in the future.

Fortunately the rules are not complicated or surprising; you could probably
write them down yourself:

If in state N (new line) and TEX sees

a) an escape character (type 0), TFX scans the entire control sequence, then
digests it (i.e., sends the control sequence to the guts of TEX where it will be
processed appropriately) and goes to state S.

b) an end-of-line character (type 5), TEX throws away any other information
that might remain on the current line, then dlgests a “\par" instruction
(paragraph end) and remains in state N,

c) an ignored character or a space (types 9,10), TiX passes it by, remaining in
state N.

d) anything else (types 1,2,3,4,6,7,8,11,12), TEX digests it and goes to state M.
In summary, when TEX i§ beginning a line, it skips blanks, and if it gets to the
end of the line without seeing anything it considers that a paragraph has ended.
If in state M (middle of line) and TiX sees

a) an escapc character (type 0), TEX scans the entire control sequence, then
digests it and goes to state S.

b) an end-of-line character (type 5), TiX throws away any other information
that might remain on the current line, then digests a blank space and goes
to state N.

c) an ignored character (type 9), TEX passes it by, remaining in state M.
d) a space (type 10), TEX digests a blank space and goes to state S.

e) anything clse (types 1,2,3,4,6,7,8,11,12), TEX digests it and remains in state
M.
In summary, when TEX is in the middle of a line, it digests what it sees, but

converts one or more blank spaces into a single blank space, and also treats the
end of line as a blank space.

:
i
H

How TEX rcads what you type 31

If in state S (skipping blanks) and TEX sees

a) an escape character (type 0), TEX scans the entire control sequence, then
digests it, remaining in state S.

b) an end-of-line character (type 5), TEX throws away any other information
that might remain on the current line, then switches to state N,

c) an ignored character or a space {types 9,10), TiX passes it by, remaining in
state S.

d) anything else (types 1,2,3,4,6,7,8,11,12), TEX digests it and goes to state M.

In summary, when TEX is skipping blanks, it ignores blanks and doesn't treat
the end of a line as a blank space.

So those are the rules. Only three major consequences deserve special em-
phasis here:

First, a (carriage-return) always counts as a space, even when it follows a
hyphen. If you want to end a line with a {carriage-return) but no space, you can
do this by typing the control sequence “\!" just before the (carriage-return).

For example, the Tth-last line of MY STORY in Chapter 6 should really have
been typed as follows:

he preferred to be called——-\!

A second consequence of the rules, if you are using the basic format of
Appendix B, is that the % sign is trcated as an end-of-line mark equivalent to a
(carriage-return). This is uscful for putting comments into the manuscript. For
example, you might include a copyright notice for legal protection; or you might
say

% Figure 5 belongs here;

or you might say

% This } is supposed to match the { of "\ctrline{".

Anything that you might want to remember but not to print can be included
after a %, because TEX will never look at the rest of the line.

32 Chapter 7

A third consequence of the rules is that you should indicate the end of a
paragraph either explicitly, by using the control sequence \par; or implicitly, by
having an entirely blank line, (The end of a file page also counts as a blank line,
because of the way files of text are conventionally represented in the computer.)
In the latter case, TiX has always read a space before it camc to the end of the
paragraph, beccause it digested a space at the end of the linc before the blank
line. In the former case, you may or may not have typed a space before you
typed “\par". Fortunately, there's nothing to worry about; the result is the
same in either case, because TiX's paragraph processor discards the final item of
a paragraph when it is a space.

If you have several blank lines in a row, TEX digests a “\par” instruction for
each one, according to the rules. But this doesn't show up in the output, because
empty paragraphs are discarded.

»Exercise 7.1: If a line isn't entirely blank, but the first nonblank character on
the line is %, does this signifly end-of-paragraph?

When TEX first starts up, the 128 possible characters are initially interpreted as

follows. Characters “A” to “2" (ascii codes ‘101 to “132) and “a” to “=” (ascii
codes “141 to “172) are type 11 (letters). The characters (null), (line-feed), (vertical-tab),
(alt-mode), and (delete) (ascii codes 0, *12, “13, “175, and “177 at Stanford) are type
9 (ignored). The characters (tab) and () (ascii codes ‘11 and “40) are type 10 (spaces).
The characters (form-feed) and (carriage-return) (ascii codes ‘14 and °15) are type 5
(end of line). All other characters are type 12 (other). The first non-space input by
TiEX is defined to be the escape character used in error messages, and it is set to type
0 (escape). You can use \chcode to change the type code of any character, and it is
possible to have several characters each defined to be of type 0 or any other type. The
instruction

\chcode{number;)+({numbers)

(where (number;) is between 0 and 127 and (number;) is between 0 and 12) causes
the character whose 7-bit code is {(number,) to be regarded as type (numbers) for the
duration of the current group, unless its type is changed again by another \chcoda.
For example, if for some reason you want TjiX to treat the letter “a” as a non-letter,
you could say

\chcode “141+12

But this would probably not be useful beca\ise, e.g., “\par” would no longer be a control
sequence; it would be read as “\p" followed by “a" followed by “r".

The characters you type 33

We will see later that spaces arc sometimces ignored after other things besides
control sequcnces, since there arc various TEX constructions that look better if
spaces or end-of-line follow them. For convenient reference, here is a list of all

cascs in which TEX will ignore a space, even though most of these constructions
haven't been explained yet in the manual:

e After a space or end-of-line character,
e After a control sequence.

e After the > that ends a \def or \if or \ifeven or \else or \noalign
or \output or \mark.

e Betwecen $ signs, when TX is in math mode.
e After the $$ that ends a display.

e After a file name or an alrcady-defined font code or a unit of measure or
the words “to” or “size" in justification specifications.

o Before or after a (number) or the sign preceding a {number).

e After a paragraph, or in general whenever TEX is in vertical mode or
restricted vertical mode.

'IEX goes into reading state S only as shown in the detailed reading rules above.

When it ignores spaces at other times, e.g. after a unit of mecasure, the spaces
it ignorcs are actually “digested” spaces; the processing routine calls on TEX's input
mechanism to continue reading until a non-space is digested. This is a fine point, because
it hardly ever makes a difference; but hereis a case where it matters: Suppose you make
the definition “\def\space{L}}". Then if you type “\space\space”, TEX will digest
two spaces; these spaces would not be ignored after a space or end of line or control
sequence, because of TEX's reading rules, but they would be ignored in the other cases
listed above, because of T}X's digestive processes. On the other hand \U (control space)
is treated differently: it always means an explicit space and it is never ignored in any
of the above cascs except the last (in vertical mode). Sometimes Ti:X will ignore only
one digested space, but at other times it will ignore as many as are fed to it; if you
really need to know which cases fall into each category, you can find out by experiment.

8> The characters you type

A lot of different keyboards are used with TEX, but few keyboards can produce
128 different symbols. Furthermore, as we have seen, some of the characters that

34 | Chapter 8

you can type on your keyboard are reserved for special purposes like escaping)
and grouping. Yet when we studied fonts it was pointed out that there are 128 3
characters per font. So how can you refer to the characters that aren't on your
keyboard, or that have been pre-empted for formatting?

One answer is to use control sequences. For example, the basic format of
Appendix B, which defines % to be an end-of-line symbol so that you can use it
for comments, also defines the control sequence \% to mean a per-cent sign.

To get access to any character whatsoever, you can type

\char(number)

where (number) is any number from 0 to 127 (optionally followed by a space),
and you will get the corresponding character from the current font. For example,
the letter “b” is character number 98, so you could typeset the word bubble by
typing

\char98u\char98\char98le

if the b-key on your typewriter is out of order. (Of course you need the \, ¢, h,
a, and r keys to type “\char", so let's hope they are always working.)
Character numbers are usually given in octal notation in reference books
(i.e., using the radix-8 numbecr system). A (number) in TEX's language can be
preceded by a -, in which case it is understood as octal. For example, the octal
code for “b" is 142", so
\char”142

is equivalent to \char98. In octal notation, character numbers run from -0 to
“177. ‘

Formally speaking, a (number) in a TEX manuscript is any number of spaces fol-

lowed by an optional “*” followed by any number of digits followed by an optional
space. Or it can be any number of spaces followed by “\count(digit)" followed by an
optional space; in the latter case the specified counter is used (cf. Chapter 23).

You can't use \char in the middle of a control sequence, though. If you type

\\char-142

*The author of this manual likes to use italic digits to denote octal numbers, instead of using
the ° symbol, when octal numbers appear in printed books.

The characters you type 35

TEX reads this as the control sequcnce \\ followed by ¢, h, a, etc., not as the
control sequence \b.

Actually you will hardly ever have to use \char yourself, since the characters
you want will probably be available as predefined control sequences; \char is
just a last rcsort in case you really necd it (and it is also indispensible for the
designers of book formats).

Since TEX is intended to be usciul on many different kinds of keyboards, it
does not assume that you can type very many of the exotic characters. For ex-
ample, if your keyboard has an a on it (Greek lower case alpha)—this is character
code 2 at Stanford—you will be able to type “a” in a math formula and get an
alpha. But if you don't have a on your keyboard, TEX understands the control
sequence \alpha just as well.

Character code 2 in TiX's font emrl0 is not really an alpha; it is actually
©, an upper case Greek theta! TrX doesn't want you to type “a" except in math
formulas. When you are typing straight text with TEX's special fonts like cmr10,
you should confine yourself to the symbols usually found on a typewriter and a
few more that are listed in the next chapter, In fact, every font you use might
have a diffcrcnt way of assigning its symbols to the numbcrs 0 to 127. Whoever
designed the font should tell you what this encoding is. It's not even guaranteed
that an “a” will yield an “a”. Your keyboard converts what you type into codes
between 0 and 127, and thcse codes will sclect the corresponding characters of
the current font, but a font designer can put whatever symbol he or she wants
into each position.

Furthermore, different fonts might also have different ligatures. It isn't true
that —— will give you a dash in all fonts with TX, nor that ~* will become *, nor
that ££1 will beccome fl. Each font designer decides what ligature combinations
will appear in his or her font, and this person should tell you what they are. The
seven ligatures

S e ff fi fl ffi ffl

described in Chapler 2 are available in all the “standard” TX roman and slanted
fonts, but you should not assume that they are present in all fonts.

Similarly, accents like \” and * can't be used with all fonts; the accent
c:aracters have to be in certain positions within the font, and not all fonts have
them.

36 Chapter 8

If you want to use an accent on a nonstandard font (e.g., if you need a new accent

for some newly discovered African dialect), suppose you have a font that includes
this accent as character number “20. Then you can type “\accent *20a" to get this
accent over an “a", etc. In general, type

\accent{number){char)
to get an accent over a character in the same font, or
\accant{number)\ : (font){char)

to get an accent over a character in a diffcrent font. You're not allowed to say things
like “C\:b\accent’20}a", however; the character to be accented must immediately
follow the accent except for font changes.

<9> TEX’s standard roman fonts

When you are using a standard roman font (like cmrl0, cmb10, cmsl0, or cmsslO,
which stand respectively for Computer Modern Roman, Bold, Slanted, or Sans-
Serif, 10 points high), you need to know the information in this chapter.

These fonts are intended to contain ncarly every symbol you will need for
non-math text, including accents and special characters for use with foreign lan-
guages. When you are using such fonts you should confine yourself to typing the
following symbols only: :

the lctters A to Z and a to =
the digits O to 8
the standard punctuationmarks , : ; ! 2 () [] &~ 7= - %/

You can alsotype + = < > and you will get the corresponding symbols, but this
is not recommended because these symbols should be used only in mathematics
mode (explained later). The result will look better in mathematics mode, because
TeX will insert proper spacing. When you use the “-" and “/" it should not be
for mathematics; do hyphens and slashes outside of math mode, but don't do
subtractions and divisions.

TEX's standard roman fonts 37

Conspicuously absent from this list are the following symbols found on many
keyboards: |

r

\{}#+$%1t14s "0

Resist the temptation to type them. Also resist the temptation to type mathe-
matical symbols like '

| = a B ¢ N\ 7 V 3 oo

and so on, if your keyboard has them. Like + and =, they should be reserved for
mathematics modc; but unlike + and =, they don't give the results you might
expect, except in mathematics mode.

By using control sequences you can obtain the following spec'ial symbols
needed in foreign languages:

Type to get

\ss B (German letter ss)

\ae # (Latin and Scandinavian ligature ac)
\AE & (Latin and Scandinavian ligature AE)
\ce @ (French ligature oc)

\OE &E (French ligature OE)

\o ¢ (Scandinavian slashed o)

\O @ (Scandinavian slashed O)

For example, if you want to specifly “AZsop's (Buvres en francais” you could type -
\AE sop“s \OE uvres en fran\c cais .

(Note the spaces after these control sequences. Another way to separate them
from the surrounding text would be

{\AE}sop~“s {\OE}uvres en fran{\c c}ais ;

this looks a little nicer, perhaps, in the computer file, but it's harder to type.)

38 Chapter 9

The following accents are available in standard roman fonts, shown here with
the letter “o":

Type to get

\~o & (accent grave)

\“o 6 (accent aigu, acute accent)

\A o 6 (accent circonflexe, circumflex or “hat” accent)
\v o & (Slavic accent, inverted circumflex)
\u o & (breve, short vowel)

\=0 & (macron or bar, long vowel)

\"o 6 (umlaut or double dot)

\H o 6 (long Hungarian umlaut)

\b o & (vector accent—used in mathematics)
\s © 6 (tilde or squiggle)

\t oo S (ties two letiers together)

\a a & (Scandinavian a with circle)

\1 1 1 (Polish crossed 1)

\¢c ¢ ¢ (cedilla accent)

The last three of these examples are shown with other letters instead of “o”
because they are somewhat special; the Scandinavian accent is shown over an
“a” since “&" isn't a Scandinavian letter. Similarly, the \1 accent is specifically
designed for the letter “I". Cedillas are usually associated with the letter “c"
(although it is true that “Q" appcars in Navajo).

Spaces are obligatory whcre shown in thcse examples. But the space can be
omitted after the accent codes \~, \ 7, \=, and \ ", since they don't involve letters.

Within a font, accents are dcsxgned to appear at the right height for letters
like “o"; but TEX will raise an accent if it is applied to a tall letter. For example,
the result of “\"0" is “O". This simple rule almost always works all right, but
sometimes it fails; for example, an upper case A with the circle accent tradition-
ally has the circle touching the A (A), at lcast in Scandinavian books, while “\a
A" yields “A". (Both of these forms are used by modern American printers to
denote angstrom units, but A is preferable.) The \1 doesn't work with a capital
L either; “\1 L" yields “L". An even more conspicuous failure of TEX's rule
occurs if you try to put a cedillaon an upper case “C" by typing “\¢ C"; TEX
will raise the cedilla to give “GC"! (See below for how to handle these anomalous
cases.) -

s -.,.-.m«m.«w
«

TEX's standard voman jonts 39

When the letters “i" and “j" are accented, it is traditional to omit the dots
they contain. Therefore standard roman fonts contain the dotless letters

1 and
which you can obtain by typing “\i" and “\j", respectively. For example, to
obtain “miniis” you would type “m\=\i n\u us".

»Exercise 9.1: Explain what to type in order to get the sentence
Commentarii Academa Petropolitana is now Doklady Akademiia Nauk SSSR.

»Excrcise 9.2: How would you specify the names @ystein Ore, fUri [Anov, Ja'far
al-Khowarizmi, and Wladyislaw SiiBman?

The character to be accented must immediately follow the accent, except for the

fact that you are allowed to change fonts in between; sce the remarks at the close
of the previous chapter. TEX adjusts for the slantcdness of characters when placing
accents, including the possibility that the accent comes from a font with a different
slant than the character being accented. For example, if you type

\"e \'E \@#l\"@e \'E \rm\"\sel & \rm\“\sl E \“\rm o \sl\"\rm E

using basic format, the result will be

tE¢EEE¢CE,

The fonts are designed so that the anomalous cases of “bad accents” mentioned
above can be handled as follows, using the \spose (superposc) control sequence
of basic format: To get

A CL
type respectively
\spose{\raise 1.687pt\hjust{\char’27>}A

\spose{\char’30}C
\spose{\raise 2.5pt\hjust{\char’31}}L

(This is for 10-point sizes; the amounts to raise the accents must be adjusted propor-
tionately when working with other sizes. For example, “\raise 1.667pt" would
become “\raise 1.5pt" in 9-point type.)

A complete list of the 128 symbols in TiX's standard roman fonts appears
in Appendix F. But everything a typist nceds to know about them has already
been explained; it's not necessary for you to know the numeric character codes.

40 Chapter 10

<10> Dimensions

The example program used in the trial runs of Chapter 8 involved mysterious
T:X instructions like “\vskip 2.54cm”. Now it is time to reveal part of this
mystery, by explaining what units of measure TgX understands.

“Points” and “picas" are printers' traditional basic units of measure, so TEX
understands points and picas. TEX also understands inches and certain metric
units, but it converts everything internally to points. Each unit of measure is
given a two-letter abbreviation; here is a complete list of the units TEX knows
about:

pt point

pc pica (one pica equals 12 points)

in inch (one point equals 0.01383700 inches)

cm centimeter {one inch equals 2.5400 centimeters)

mm millimeter (one centimeter equals 10 millimeters)

dd Didot point (one centimeter equals 26,800 Didot points)

When you want to express some physical dimension to TEX, type it as

(optional sign)(number)(unit of measure)

or
(optional sign){number) . (number){unit of measure)

(and in the second case your (number)s had better not be in octal notation or
TEX will get confused). An {optional sign) is either a “+" or a “~" or nothing at all.
For example, here are some typical lengths: -

3 in

28 pc
-0.013837in
+ 42.1 dd
O mm

A plus sign is redundant, but some people like occasional redundancy.

Bozes 41

Spaces are optional before and after numbers and after the units of measure,
but you should not put spaces within a number or between the two letters in the
unit of measure. '

In a manual like this it is convenient to use “angle brackets” in abbreviations
for various constructions like (number) and (optional sign). Henceforth in this
manual we will use the term {dimen) to stand for any dimension expressed in the
above form. For example,

\hsize{dimen)

will be the general way to define the page width TEX is supposcd to use.
When a dimension is zero, you have to specify a unit of measure even though
it is redundant. Don't just say “O", say “Opt" or “0in" or something.

Chapter 6 mentions that units of measure may be inflated artificially on some
output devices. The following “rulers” have been typeset by TjiX so that you can
calibrate the output device used to produce the copy of the manual you are reading:

l.|.|:||-|']'|T|'i'|Tl']'|'|'|'I4in

l T T T T T T T Y v i T T T T] T T T T l T T T T T T T T ¥ I 300 pt

l_'I'II'III'I']'I'|l|'|10cm

»Exercise 10.1: (To be worked after you know about boxes and glue and have read
Chapter 21.) Explain how to typeset a 10 cm ruler like this using TEX.

<11> Boxes

TEX makes complicated pages by starting with simple individual characters and
putting them together in larger units, and putting these together in still larger
units, and so on. Conceptually, it's a big paste-up job. The TjiXnical terms used
to describe such page construction are boxes and glue.

Boxes in TEX are two-dimensional things with a rectangular shape, having
three associated measurements called height, width, and depth. Here is a picture

42 Chapter 11

of a typical box, showing its so-called reference point and baseline:

|

height

Basdline
Raference point -ﬂrr

-:lepth

From TEX's viewpoint, a single character from a font is a box, one of the
simplest kinds of boxes. The font designer has decided what the height, width,
and dcpth of the character are, and what the symbol will look like when it is in
the box; TEX just uses these dimensions to paste boxes together, and ultimately
to determine the locations of the reference points for all characters on a page.
In the cmrl0 font, for example, the letter “h” has a height of 6.9444 points, a
width of 5.5556 points, and a depth of zero; the letter “g" has a height of 4.4444
points, a width of 5 points, and a depth of 1.9444 points. Only certain special
characters like parentheses have height plus depth actually equal to 10 points,
although cmrl0 is said to be a “10 point” font. The typist docsn’t have to know
these mcasurcments, of course, but it is helpful for TEX's users to be aware of
the sort of information TEX deals with.

The character shape need not fit inside the boundaries of the box. For ex-
ample, some characters that are used to build up larger symbols like square-root
signs intentionally protrude a little bit, so that they overlap properly with the
rest of the symbol. Slanted letters frequently extend a little to the right of the
box, as if the box were skewed right at the top and left at the bottom, keeping
its baseline fixed. For example, compare the letter “q" in cmrl0 and ¢cmsl10 fonts:

“—width —>

In both cases TEX thinks the box is 5 points wide, so both letters get exactly the
same treatment. TEX doesn't know exactly where the ink will go—only the font

]

Bozxes 43

designer knows this. But the slanted letters will be spaced properly in spite of
TiX's lack of knowledge, because the baselines will match up.

Actually the font designer also tells TiX one other thing, the so-called italic
correction: A number is specified for cach character, tclling roughly how far that
character extends to the right of its box boundary. For example, the italic cor-
rection for “q" in cmrl0 is zero, but in cmsl10 it is 0.2083 points. If you type the
control sequence

\/

following a character, TEX will effectively increase the width of that character
by the italic correction. It's a good idea to use \/ when shifting from slanted to
unslanted fonts without intervening spaces, for example when a slanted word is
immediately followed by an unslanted right parenthesis or semicolon. The author
typed

the so-called {\sl italic correction\/}:

when specifying the first sentence of the paragraph you are now reading. Of
course, there's no need to make the italic correction when a slanted letter is
followed by an unslanted period or comma.,

Another simple kind of box TX deals with might be called a “black box,”
a rectangle like “E" that is to be entirely filled with ink at printing time. You
can specify any height, width, and depth you like for such boxes—but they had
better not have too much area or the printer might get upset. (Printers generally
prefer white space to black space.)

Usually these black boxes are made very skinny, so that they appear as
horizontal lines or vertical lines. Printers traditionally call such lines “horizontal
rules” and “vertical rules,” so the terms TX uses to stand for black boxes are
\hrule and \vrule. We will discuss the use of rule boxes in greater detail later.

Everything on a page that has been typeset by TX is made up of simple
character boxes or rule boxes, pastcd together in combination. TjiX pastes boxes
together in two ways, either horizontally or vertically. When TiX builds a horizon-
tal list of boxes, it lines them up so that their reference points appear in the same
horizontal row; thercfore the basclines of adjacent characters will match up as
they should. Similarly, when T}X builds a vertical list of boxcs, it lines them up
so that their reference points appear in the same vertical column.

There is also a provision for lowering or raising the refercnce points of in-
dividual boxes in a horizontal list. This has been used, for example, to lower the

44 Chapter 11

“E" in “TEX". Similarly, there is a way to move the reference points of boxes to
the left or to the right in a vertical list. This is used, for example, when centering
an accent over a letter, since an accented letter like Eis esscntially a box made
from a vertical list containing the two character boxes “’" and “E".

When a big box has been made from a horizontal list of smaller boxes, the baseline

of the big box is the common baseline of the smaller boxes. (More precisely, it's the
common baseline they would share if they hadn't been raised or lowered.) The height
and depth of the big box are determined by the maximum distances that the smaller
boxes reach above and below the baseline, respectively; any raising and lowering of the
smaller boxes is taken into account during this calculation. The width of the big box
is determincd by whatever TiX operation was used to create that box, as explained in
the next chapter.

When a big box has been made from a vertical list of smaller boxes, its reference

point is the reference point of the last (lowest) box in the lisi (but ignoring left
or right shifts). The depth of the big box is therefore equal to the depth of this last
smaller box. The width of the big box is determined by the maximum distance that
the smaller boxes reach to the right of the reference point; any left or right shifting of
the smaller boxes is taken into account during this calculation. (Note that if any of
_ the smaller boxes have been shifted left, they will protrude past the left boundary of
the big box.) The height of the big box is determined by whatever TiX operation was
used to create that box, as explained in the next chapter.

A page of text like the one you're reading is itself a box, in TEX's view: It
is a largish box made from a vertical list of smaller boxes representing the lines
of text. Each line of text, in turn, is a box made from a horizontal list of boxes
representing the individual characters. In more complicated situations, involving

mathematical formulas and/or complex tables, you can have boxes within boxes -

within boxes ... to any level. But even these complicated situations arise from
horizontal or vertical lists of boxes pasted together in a simplc way, so all that
you and TEX have to worry about is one list of boxes at a time. In fact, when
you're typing straight text, you hardly have to think about boxes at all, since
TX will automatically take responsibility for assembling the character boxes into
words and the words into lines and the lines into pages. You only need to be
aware of the box concept when you want to do something out of the ordinary,
like centering a heading or providing extra space, etc.

The height, width, or depth of a box might be negative, in which case it is a
“shadow box” that is somewhat hard to draw. You might be able to think of some

SR ENER PRI

Glue 45

tricky things to do with such boxes; TiX just lines things up and adds up dimensions
as if cverything were positive or zero. Thus, for example, if a font designer specified a
character with negative width, it would act like a backspace. When forming a box from
a horizontal list, however, TEX sets the height and depth to zero if they turn out to be
negative, so only the width can be ncgative. Similarly, only the height and depth of a
box formed from a vertical list can be negative. Negative dimensions are not allowed
in rule boxes.

<12> Glue

But there's more to the story than just boxes: there’s also some magic mortar
called gluc that TEX uscs to paste boxes together. For example, there is a little
space between the lines of text in this manual; it has been calculated so that
the baselines of consccutive lincs within a paragraph are exactly 12 points apart.
And thcere is space between words too; such space is not an “cmpty” box, it is
part of the glue between boxes. This glue can stretch or shrink so that the right
margin of cach page comes out looking straight.

When TEX makes a large box from a horizontal or vertical list of smaller
boxes, there often is glue between the smaller boxes. Glue has three attributes,
namely its natural space, its ability to stretch, and its ability to shrink.

In order to understand how this works, consider the following example of
four boxes in a horizontal list separated by three globs of glue:

width § with 3
width 6 width 8
o E',‘,‘;’;' yoa
§92 §iE yE%
aY -
“5E " gd 33
« width §2 >

The first glue element has 9 units of space, 3 of stretch, and 1 of shrink; the next
one also has 9 units of space, but 8 units of stretch and 2 of shrink; the last one

48 Chapter 12

has 12 units of space, but it is unable to stretch or to shrink, so it will remain
12 units of space no matter what.

The total width of boxes and glue in this example, considcring only the space
components of the glue, is 54+9-+8+4 9+ 3+ 12 4 8 = 52 units. This is
called the natural width of the horizontal list; it's the preferrcd way to paste the
boxes together. Suppose, however, that TEX is told to make the horizontal list
into & box that is 58 units wide; then the glue has to stretch by 8 units. Well,
there arc 3 -+ 6 4 0 = 9 units of stretchability present, so T}:X multiplies each
unit of stretchability by 6/9 in order to obtain the extra 6 units needed. Thus,
the first glob of glue becomes 9 4 (8/9) X 3 = 11 units wide, the next becomes
9 4 (6/9) X 6 = 13 units wide, the last remains 12 units wide, and we obtain
the desired box looking like this:

#—E. B

. width 68 —>

On the other hand, if TEX is supposed to make a box 51 units wide from the
given list, it is necessary for the glue to shrink by a total of onec unit. There are
three units of shrinkability present, so the first glob of glue would shrink by 1/3
and the second by 2/3.

The process of determining glue thickness when a box is being made from
a horizontal or vertical list is called setiing the glue. Once glue has been set,
it becomes rigid—it won't stretch or shrink any more, and the resulting box is
essentially indecomposable.

Glue will never shrink more than its stated shrinkability. The first glob of
gluc above, for example, will ncver be allowed to become narrower than 8 units
wide, and TEX will never shrink the given horizontal list to make its total width
less than 49 units. But glue is allowed to stretch arbitrarily far, whenever it has
a positive stretch component.

%

Glue 47

»Exercise 12.1: How wide would the gluc globs be if the horizontal list in the
illustrations were to be made 100 units wide?

[4

TEX is somewhat reluctant to stretch glue more than its stated stretchability, as we

shall scc later when we discuss the “badness” of particular gluc scttings. Therefore
if you are trying to decide how big to make each aspect of the gluc in some layout, the
rules are: (a) The natural glue space should be the amount of space that looks best.
(b) The glue stretch should be the maximum amount of space that can be added to the
natural spacing before the layout begins to look bad. (c) The glue shrink should be the
maximum amount of space that can be subtracted from the natural spacing before the
layout begins to look bad.

In most cases the designer of a book layout will have spccified all the kinds
of glue that are to be used, so a typist will not need to decide how big any glue
attributcs should be. For example, the Art of Computer Programming layout in
Appendix E includes the definition of three control sequences \xskip, \yskip,
and \yyskip. A typist for those books will insert \xskip within a paragraph
in certain places where a little extra stretchability is appropriate; and \yskip
is inserted between paragraphs when the paragraphs discuss somewhat different
topics. Even more space is inserted before and after thecorems and algorithms,
etc.; this is called \yyskip because it is twice as much glue as \yskip. (The
same three control sequences have been used when preparing this manual. For
example, “\xskip" appears in the paragraph preceding this one, just before
“(a)", " (b)", and “(c)"; and “\yyskip" is used before and aftcr cvery “dangerous
bend" paragraph like the next one.)

To specify glue in a horizontal list of boxes, without using a predcfined format like

\xskip, type “\hskip(dimen) plus(dimen) minus{dimen)”’. The “plus{dimen)”
and “minus(dimen)” specifly stretch and shrink components. They are optional; and
if left out, the corresponding glue component has length zero. The space component,
however, must always be given, even when it is zero; and if zero, you must remember to
type “opt”, not just “0". If you are omitting the shrink component, the next characters
of your text had better not be “minus”. If you are omitting both stretch and shrink
components, the next characters of your text had better not be “plug”. Similar remarks
apply to the specification of glue in vertical lists; the only differcnce is that you type
“\vekip” instead of “\hekip”.

There is one aspect of glue that a careful typist will want to be aware of,
namely that TEX automatically increases the stretchability (and decreases the

48 Chapter 12

shrinkability) after punctuation marks. The reason for this is that it's usually
better to put more space after a period than between two ordinary words, when
spreading a line out to reach the desired margins. Consider, for example, the
following sentences from a classic kindergarten pre-primer:

““0Oh, oh!“” cried Baby Sally. Dick and Jane laughed.
If TEX sets this at its natural width, all the spaces will be the same:
“Oh, oh!" cried Baby Sally. Dick and Jane laughed.

But if the line needs to be expanded by 5 points, 10 points, 15 points, or more,
TEX will sct it as '

“Oh, oh!" cried Baby Sally. Dick and Jane laughed.
“Oh, oh!"” cried Baby Sally. Dick and Jane laughed.
“Oh, oh!" cried Baby Sally. Dick and Jane laughed.
“Oh, oh!" cried Baby Sally., Dick and Jane laughed.

and so on. There is no glue between adjacent letters, so individual words will
always look the same. The glue after the comma stretches at 1.25 times the rate
of the glue between adjacent words; the glue after the period and after the | - -
stretches at 3 times the rate. Furthermore if TEX had to shrink this line to its
minimum width, the result would be

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glue after a comma shrinks only 80 per cent as much as ordinary inter-word
glue, and after a period or exclamation point it shrinks by only one third as much.

The exact rule TjX uscs at a spacc is this: Each font tells TjiX what glue to use

for spaces when that font is active. When starting to process a horizontal list, TEX
sets an internal variable called the “space factor” to 1. When appending a character to
a horizontal list, the space factor is changed to 3 if the character is a period, question
mark, or exclamation point (as determined by its ascii code); it is changed to 2 if the
character is a colon, to 1.5 if a semicolon, to 1.25 if a comma. The space factor is left
unchanged if the character being appended isa Yorjor 'or ”; and it is reset to 1 whenever
any other character or math formula or non-character box is appended. Furthermore,
the space factor remains unchanged when appending a character immediately following
an upper case letter. (The reason for this is to avoid treating the period specially when
it merely follows an initial, like the periods in “P. A. M. Dirac”.) When a space is
encountered, the glue space is taken from the current font glue space specification; the
stretch and shrink are obtained by respectively multiplying and dividing the font glue
stretch and shrink specifications by the space factor.

Glue 49

The only trouble with this rule is that it fails when a period isn't really a
period ... like when it is used (as in this scntence) to make an “cllipsis”" of three
dots, or when it is used after abbreviations. If, for example, you are typing a
bibliographic reference to Proc. Amer. Math. Soc., you don't want the glue after
these periods to be any different from the ordinary inter-word glue. The best
way to handle this is to use “escape space” after a non-sentence-ending period,
e.g., to type

Proc.\ Amer.\ Math.\ Soc.

This works because the space in “\UJ" always has the unmodified inter-word glue
of the current font. Granted that this input looks a bit ugly, it docs give the best-
looking output. It's one of those things we occasionally have to do when dealing
with a computer that trics to be smart,

@ »Exercise 12.2: How can you defeat the rule the other way, for sentences like “...
launched by NASA."?

Incidentally, if you try to specify “...” by typing three periods in a row,
you get “.."—the dots are too close together. The best way to handle this is to
go into mathcmatics mode, using the \l1dots control scquence defined in basic
TEX format. For example, if you type

Hmmm \ldots I wonder why?

the result is “Hmmm ... I wonder why?" The reason this works is that math
formulas are exempt from normal text spacing rules, Chapter 17 has more to
say about \l1dots and related topics.

One of the interesting things that happens when glue stretches and shrinks at
different rates is that there might be glue with essentially infinite stretchability.
For example, consider again the four boxes we had above, with the same glue as
before except that the glue in the middle has stretchability 999997 (nearly one
million) instcad of 6. Now the total stretchability is one million; and when the
line has to grow, almost all of the additional space will get put into the middle
glue. If, for cxample, a box of width 58 is desired, the first gluc expands from 9
to 9.000018 units, the middle glue from 9 to 14.999982 units, and of course the
last glue remains exactly 12 units thick. For all practical purposes, the spacing
has gone from 9,9, 12 to 9, 15, 12.

T TEO TEY:T

TYITTENT

50 | Chapter 12

If such infinitely stretchable glue is placed at the left of a row of boxes, the
effect is to right justify them, i.e., to move them over to the rightmost boundary
of the constructed box. And if you take ¢wo globs of infinitely stretchable glue,
putting one at the left and one at the right, the effect is to center the list of
boxes within a larger box. This in fact is how the \ctrline instruction works:
it places infinite glue at both ends, then makes a box of width \hsize. [Actually
the stretchability is 1000 cm, namely 10 meters (about 33 feet); that isn't infinite,
but it's close enough.] |

The glue actually used in the definition of \ctrlineis \hskip Opt plus 1000cm

minus 1000cm; in other words, both stretch and shrink components are essentially
infinite. The reason is that if you try to center something that is bigger than the actual
\hsige, it will be centered but will extend into the margins; the glue at left and right
will shrink from 0 to something negative. Like box dimensions, glue components can
be negative, and this is occasionally useful for things like backspacing.

@ “Infinite” glue can be specified in a horizontal list by typing “\hfi11”, or in a
vertical list by typing “\vf111”. An \hfi11 instruction is equivalent to \hakip
Opt plus 10000000000pt (that's ten billion points), and \vfi11l is equivalent to
\vekipping by the same amounts. We have already seen a typical use of \vfill in
the example of Chapter 6.

<<13> Modes
Just as people get into different moods, TEX gets into different “modes.” (Except
that TEX is more predictable than people.) There are six modes:
eVertical mode. [Building the vertical list used to make the pages of
output.)
eRestricted vertical mode. [Building a vertical list for a box within a
page.]
eHorizontal mode. [Building the horizontal list used to make the next
paragraph for the output pages.)
eRestricted horizontal mode. [Building a horizontal list for a box within
a page.]
eMath mode. [Building a mathematical formula to be placed in a horizon-
tal list.)

Modes 51

eDisplay math mode. [Building a mathematical formula to be placed on
a line by itself, temporarily interrupting the current paragraph.]

In simple situations, you don't need to be aware of what mode TEX is in, because
it just does the right thing. But when you get an error message that says “You
can't do that in horizontal mode", a knowledge of modes helps explain
why TEX thinks you goofed.

Basically TEX is in one of the vertical modcs when it is preparing a list of
boxes and glue that will be placed vertically on top of one another; it's in one
of the horizontal modes when it is preparing a list of boxes and glue that will be
strung out horizontally next to each other with baselines aligned; and it's in one
of the math modes when it is reading a math formula.

A play-by-play account of a typical TEX job should make the mode idea
clear: At the beginning, TEX is in vertical mode, ready to construct pages. If
you specify glue or a box when TiX is in vertical mode, the glue or the box gets
placed on the current page below what has already been specified. For example,
the \vskip instructions in the sample run we discussed in Chapter 6 contributed
vertical glue to the page; and the \ctrline{MY STORY} instruction contributed
a box to the page. While building the \ctrline box, TEX went temporarily into
restricted horizontal mode, but returned to vertical mode after setting the glue
in that box.

Continuing with the example of Chapter 8, TX switched into horizontal
mode as soon as it read the “0” of “Once upon a time". Horizontal mode is
the mode for making paragraphs. The entirc paragraph up to the \par was input
in horizontal mode; then it was divided into lines of the appropriate length, these
lines were appended to the page (with appropriate glue between them), and TEX
was back in vertical mode.

In general when TEX is in vertical mode, the first character of a new paragraph
changes the mode to horizontal for the duratxon of a paragraph. If a begin-
math character ($) appears when in horizontal mode, X plunges into math
mode, processes the formula up until the closing $, then adds the text of this
formula to the current paragraph and returns to horizontal mode. (Thus, in the
“I wonder why?" example of the previous chapter, TEX would go into math mode
temporarily while processing \1dots, treating the dots as a formula.)

However, if two consecutive begin-math characters appear in a paragraph
($%), TEX interrupts the paragraph where it is, contributes the paragraph-so-far to
the page, then processes a math formula in display math mode, then contributes

52 Chapter 18

this formula to the current page, then returns to horizontal mode for more of the
paragraph. (The formula to be displayed should end with $$.) For example, if

you type

the number $$\pi \approx 3.1415926536%$$ is important ,

TEX goes into display math mode between the $$'s, and the output you get states
that the number
T Ay 3,1415926536

is important.

TEX gets into restricted vertical mode when you ask it to construct a box from

a vertical list of boxes (using \vjust or \valign) or when you do \topinsert
or \botinsert. It gcts into restricted horizontal mode when you ask it to construct
a box from a horizontal list of boxes (using \hjust or \halign). Box construction is
discussed in Chapter 21. Restricted modes are like the corresponding unrestricted ones
except that you can't do certain things. For example, you can't say $$ in restricted
horizontal mode, because you're not making a paragraph. You can't begin a paragraph
in restricted vertical mode, etc. All the rules about what you can do in various modes
are summarized in Chapters 24-26.

When handling simple manuscripts, TEX spends almost all of its time in
horizontal mode (making paragraphs), with brief excursions into vertical mode
(between paragraphs).

At the end of a job, you type “\end” at some point when TEX is in vertical
mode; this causes TEX to finish any unfinished pages and stop. (Actually it is
better to type “\vfill\end" in most cases, since \vfill inscrts enough space
to fill up the last page properly. Without the \vfill, TEX attempts to stretch
out the lines it has accumulated for the last page, with the bottom line appearing
at the bottom of the page; you probably don't want this.)

<<14> How TiX breaks paragraphs into lines

When the end of a paragraph is encountered, TeX determines the “best” way
to break it into lines. In this respect, TEX gives better results than most other
typesetting systems, which produce each separate line of output before beginning
the next, because the final words of a TEX paragraph can influence how the lines

How TEX breaks paragraphs into lines 53

at the beginning are broken. T}X's new approach to this problem (based on
“sophisticated computer science techniques” —whew!) requires only a little more
computation than the traditional methods, and leads to significantly fewer cases
when words need to be hyphenated.

TEX does try to hyphenate words, but it uses a hyphenation only when there
is no better alternative. The complete rules by which TEX hyphenates words are
given in Appendix H. They are sufficiently simple that you could memorize them
and apply them by hand if you wanted to, but there probably isn't any need for
you to know them in detail. Basically TeX's approach to hyphenation is one of
extreme caution: instead of trying to find all legitimate places where a hyphen
could occur, TEX sticks to hyphenations that appear to be quite safe.

In view of TEX's improved line-breaking methods, this cautious approach to
hyphenation is usually satisfactory; but every once in a while, like all automatic
approaches to language processing, it fails. The reason for failure is generally that
a rather long nonstandard word has occurred: TEX refuses to apply automatic
hyphenation to a sequence of boxes unless that sequence

a) consists entirely of lower case letters belonging to a single font; and
b) is preceded immediately by glue (e.g., a space); and

¢) is followed immediately by glue or by a punctuation mark (something that
docsn't set the “space factor” to 1, cf. Chapter 12).

One consequence of these conditions is that proper names and words containing
accented letters will not be hyphenated; but such words tend to disobey the
normal hyphenation rules anyway. Another consequence is that TEX won't mess
around with words for which you have explicitly prescribed the hyphenation.
And already-hyphenated compound words won't be broken up any further.

In spite of these apparently severe restrictions, experience shows that TEX
works amazingly well in practice, except when the margins are extremely close
together (small \hsize); and nothing works very well in that case. (A large
dictionary, combined with TiX's line-breaking method, would do the best con-
ceivable job; but for normal books and journals it isn't worthwhile for the com-
puter to waste time referring to a large dictionary. TX's program and tables for
hyphenation require only about 3000 words of computer memory, so they place
little burden on the overall processing.) When proofreading the output of TeX,
the amount of additional work nceded to correct missed hyphenations is quite
negligible compared to the amount of work that proofreading already involves.

54 Chapter 14

When you do find a word that TEX should have hyphenated but didn’t, or
when you find one of the extremely rare cascs in which TEX inserts a hyphen
in the wrong place, the remedy is to revise the manuscript, telling TEX how to
hyphenate the offending word by inserting discretionary hyphens. The control
sequence “\-" indicates a discretionary hyphen, namely a place where a8 word
may be hyphenated if there is no better alternative. '

For example, if you run into a situation where the French word mathématique
must be hyphenated, you can type it as

math\-\"e\-ma\-tique .
Another word TEX has trouble with is “onomatopoeia”; if necessary, type it in as
on\-o\-mat\-o\-poeia

(Or you could use the fancy “ce” ligature, cf. Chapter 9.) But don't bother to
insert any discretionary hyphens until after TEX has failed to find a good way to
break lines in some paragraph. ‘

Before describing TiEX's neat method for breaking a paragraph up into lines, we
should discuss the rules for all legal breaks in a paragraph. Here they are: Outside
of math formulas, you can break a paragraph

a) at glue, provided that the gluc is immediately preceded by a character box or a
constructed box (but not a rule box), or by the end of a math formula, or by a
discretionary hyphen, or by an insertion (\topinsert or \botinsart, which are
explained in Chapter 15).

b) where a \penalty has been specified in horizontal mode (see below), provided that
the penalty is less than 1000.

c) at a discretionary hyphenation (with the hyphen included in the text, taken from
the font that was current at the time the \- appeared), paying a penalty of 50.

d) where \eject has been specified (see below—this is a way to end a page at a
particular place within a paragraph).

e) after “-" or any ligature that ends with “-" (thus, in standard roman fonts this
means after “-", “==", or “===").

Inside math formulas, you can break

How TEX breaks paragraphs into lines 55

a) after a binary operation like “+" (paying a penalty of 95), or after'a relation like
“=" (paying a penalty of 50).

b) where a \penalty has been specified (see below), provided that the penalty is less
than 1000.

c) at a “discretionary math hyphen” specified by “\«" (this inserts a multiplication
sign X into the formula), paying a penalty of 50.

d) where \ejact has been specified.

Note that some breaks are “free" but others have an associated penalty. Penalties
are used to indicate the relative desirability of certain breaks. Breaks at \ejoct are
compulsory; all other breaks are optional. When a break occurs at glue or just before
glue, this glue disappears.

TEX's procedure for line breaking is based on the notion of the “badness” of glue

setting. This is a technical concept defined by a formula that assigns a badness of
100 to a box in which glue had to stretch or shrink to its total amount of stretchability or
shrinkability, while the badness is near zcro if the glue's stretchability or shrinkability is
not very fully utilized. Furthermore the badness increases rapidly when glue is stretched
to more than its stated limit; for example, the badness is 800 if the glue is stretched by
twice its stretchability. Here is a precise way to calculate the badness, given that the
total amount of glue stretch and shrink are y and &, respectively, and given that the
box is supposed to grow by an amount z more than its natural width when the glue is
set: Case 1, z > 0 (stretching). If y < 10~4, replace y by 10~ Then the badness
is 100(z/y)®. Case 2, z < 0 (shrinking). If 2 < 10—, replace s by 10—% Then the
badness is 100|z/z? if |z| < 2, otherwise it is oo (infinitely bad).

When breaking lines of a paragraph, TEX essentially considers all ways to break

the lines so that no line will have badness B exceeding 200. Such breaks are called
“feasible.” Subject to this feasibility condition, T}X finds the best overall way to break,
in the sense that the minimum total number of demerits occurs, where the demerits for
each line of output are calculated as follows: If the penalty P for breaking at the end
of this line is 2 0, the number of demerits is (B 4 P 4 1)?; if P < 0, the number is
(B+ 1) — P2 Furthermore an additional 3000 demerits are charged if two consecutive
lines are being hyphenated or if the second-last line of the paragraph is hyphenated.
A “dynamic programming” technique is used to find the breaks that lead to fewest
total demerits. An attempt is made to hyphenate all words that meet the requirements
mentioned earlicr, whenever such words would straddle the end of line following some
feasible break. The hyphenation algorithm of Appendix H is used to insert discretionary
hyphens in all permissible places in such words. In practice the computation is quite
fast, and only a few hyphenations need to be attempted, except in long paragraphs.

56 Chapter 14

@ The current value of \hsi za at the close of the paragraph is used to govern the width

of each line, unless you specify “hanging” indentation. If you type “\hangindent
{(dimen) for (number)”, the specified dimension is supplied as an extra indentation on
the first n lines of the paragraph, where n is the specified number. (That's how the
second linc of the paragraph you're rcading was indented.) If you type “\hangindent
(dimen) after (number)”, the specified dimension is supplied as an extra indentation
on all but the first n lines of the paragraph. If you type just “\hangindent(dimen)”,
then “after 1” is assumed. If the specified dimension is negative, indentation occurs
at the right margin instead of at the left.

TEX indents the first line of each paragraph by inserting an empty box of width
\parindant at the beginning, unless you start the paragraph by typing the control
sequence \noindent.

@ The number 200 used to determine feasibility can be changed to 100n for any
integer n > 2 by typing “Njpar{number)”, where n is the spccified number. A
large value of n will cause TiiX to run more slowly, but it makes more line breaks
feasible in cases where lines are so narrow that n = 2 finds no solutions.

@ The instruction \ragged{number) specifies a degree of “raggedness” for the right-
hand margins. If this number is 7, the line width changes towards its natural width
by the ratio r/(100 4 r). Thus, \ragged O (the normal setting) gives no raggedness;
\ragged 100 causes the width of cach line to be midway between \hsize and its
natural width; and \ragged 1000000 almost completely suppresses any stretching or
shrinking of the glue. Some people like to use this “ragged right margin” feature in
order to make the output look less formal, as if it hadn't actually been typeset by
an inhuman computer. (Some people also think that “ragged right” typesetting saves
moncy. On traditional typesetting cquipment, this was true, but computer typesetting
has changed the situation completely: the most expensive part of the computation is
now the breaking of lines, while the setting of glue costs almost nothing.)

@ The numbers 50, 3000, 95, and 50 used in the above rules for hyphenation penalties,

consecutive-hyphenation demerits, binary-operation-break penalties, and relation-
break penalties, can bc changed by typing \chpar2+«{number), \chpar3«{number),
\chparé+(number), and \chpar7+(number), respectively. Hyphenation penalties in
force at the end of a paragraph are used throughout that paragraph; relation and
opcrator penalties in force at the opening $ of a math formula are used throughout that
formula.

@ To insert a penalty at a specified point in a paragraph, simply type “\penalty
(number)”. Any penalty > 1000 is equivalent to a penalty of co (a non-permissible

How TEX makes lsts of lines into pages 57

place to break); any penalty < 1000 implies that a break at the current place is per-
missible. The penalty may be zero or even negative, to indicate an especially desirable
break location.

@ The control scquence \eject forces a break at the position where \e ject occurs,
and also causes TIEX to begin the next line on a new page. This gives you a way to
remake page 100, say, without changing page 101, provided that it is possible to end
the new page 100 at the same place where page 101 begins. Note that \eject will make
the last line of the paragraph-so-far reach to the right-hand margin (if feasible); this
is what some printers call a “quad middle” operation. It is quite different from what
you would get if you simply typed “\par” at the spot that the revised page should
end. TiiX’s lincbreaking algorithm is especially advantagcous when handling \e ject,
because it has an apparent ability to “look ahead.”

@ Additional vertical glue specified by \parekip is inserted just before each para-
graph. This glue gets added to the normal interline glue.

<15> How TEX makes lists of lines into pages

TEX attempts to choose desirable places to stop making up one page and start
another, and its technique for doing this usually works pretty well. But if you
don't like the way a page is broken, you can force a page break in your favorite
place by typing “\eject”. An \eject command can occur in vertical mode
(e.g., between paragraphs) or in horizontal mode (within a paragraph) or even in
math mode; but you won't need to make much use of it.
@ TEX groups things into pages in much the same way as it makes up paragraphs,
except for the lookahead feature. Badness ratings and penaltics are used to find
the best place to break, but each page break is made once and for all when this “best”
place is found—otherwise TEX would have to remember the contents of so many pages,
it would run out of memory space. Legal breaks between pages can occur

a) at glue, provided that the glue is immediately preceded by a constructed box (but
not a rule box). Th:s includes the glue routinely inscrted between lines, as explained
below.

b) where a \penalty has been specified in vertical mode, provided that the penalty
is less than 1000. (Cf. Chapter 14.)

c) after an insertion (arising from \topinsert or \botinsart, see below).
d) where \e joct is specified.

Breaks at \eject are compulsory; all other breaks are optional. When a break occurs
at glue or just before glue, this glue disappears.

58 Chapter 15

When boxcs are appended to any vertical list (in particular, when they are ap-

pended to the current page), glue is automatically placed between them so that
the distance between adjacent baselines tends to be the same. For example, the lines of
9-point text you are now reading have baselines 11 points apart. This implies that the
glue between lines is not always the same, because more glue space is inserted under a
line whose characters all stay above the baseline than under a line having characters
that descend below it. Such interline glue is appended just before each box even when
you have explicitly inserted glue yourself with \vskip or \v£111; any glue you specify
is in addition to the interline glue.

Here is how interline glue gets figured: The book designer has specified two kinds

of glue by using the opcrations \baselineskip (glue) and \1lineskip (glue).
Suppose the baselineskip glue has z units of space, y units of stretch, and z units of
shrink. (In this paragraph TEX is using z = 11 points, y == z = 0, but y and z need
not be zero.) Supposc we arc appending a box of height h to a vertical list in which
the previous box (ignoring glue) had depth d. Then the interline glue inserted just
above the new box will have z — h — d units of space, y units of stretch, and z units
of shrink, whenever z—h —d 2> 0; but if z —h—d < 0, the interline glue will be the
glue specified by \1ineskip. For example, the basic TEX format in Appendix B says
“\baselineskip 12 pt \lineskip 1 pt”; this means that baselines will normally
be 12 points apart, but when this is impossible a space of 1 point will be inserted between
adjacent boxes of a vertical list. Exception: Interline glue is not inserted before or after
rule boxes, nor is it inserted before the first box or after the last box of a vertical list.

Contributions are made to the current page until the accumulated page height

minus the accumulated gluc shrinkability first exceeds the specificd page size. (Page
size is specified by the book designer using \vsize, see below.) At this point the break
is made at whatever legal break in the page-so-far results in fewest badness-plus-penalty
points B 4 P, where the badncess B is defined as in Chapter 14 (except using vertical
glue), and where the penalty P is zero unless explicitly specified or included by the
paragraphing routine. The paragraphing routine inserts a pcnalty of 80 points just
after the first line and just after the penultimate line of a multi-line paragraph, with
an additional penalty of 50 points just after a line that ends with a hyphenation. This
tends to avoid so-called “widows” (i.e., breaks that leave only one line of a paragraph
on a page); for example, TEX breaks a four-line paragraph without 80 points of penalty
only by breaking it into 2 4 2 lines. A penalty of 500 points is charged for breaking
pages just before a displayed equation. Furthermore there is a penalty of 80 for breaking
after the first line of text that follows a display, unless the paragraph ends with such
a line. (There is no penalty for breaking before the last line of text that precedes a
display, since such a line is not considered to be a “widow.”) Once the best break

How TEX makes lists of lines into pages 59

has been identified, the page is output, glue at the break is deleted, and everything
remaining is contributed to the following page. (To change the numbers 80, 50, and
500 relating to widow-line, broken-line, and display-break penalties, you can use the
\chpar instruction as explained in Chapter 24.)

Theheight of a pageis the value of \vsize, and the depth in most cases is the depth

of the bottom line on that page. Thus, if one page has 10-point type and the next
has 8-point type, the basclines at the bottoms of both pages will be at the same place
even though the descenders of 10-point letters go slightly further below the baseline than
the descenders of 9-point letters do. However, the bottom line on a page is sometimes a
constructed box whosc depth is very large, and in such a case we want the baseline to
be higher. Ti2X deals with the probiem as follows: Whenever a box having depth greater
than \maxdepth is contributed to the current page (where “\maxdepth{dimen)" has
been specified by the book designer), the depth of the page-so-far is artificially decreased
to \maxdepth, and the height of the page-so-far is correspondingly increased. (Interline
glue calculation is not affected by this artificial adjustment, except possibly afterwards
when the page is being dealt with as a completed box.) There is also another design
parameter, “\topbaseline{dimen)”, which is used to insert glue at the top of the page
so that the baseline of the first box will be at least this distance from the top (if it isn't
a rule box). All other gluc is normally deleted at the top of each page; to put glue there,
simply insert a \null box first. If several different values of \vsize, \maxdepth, or
\topbaselina occur in the same TEX job, each page is governed by the values in force
when the first item was contributed to that page.

A “floating-insertion” capability is built into TX so that, among other things,

illustrations can be placed at the top of the first subsequent page on which they fit,
and footnotes can be placed at the bottom of the page on which the footnote reference ap-
pears. Here's how it works: You type “\topinsert{(vlist)}" or “\botinsert{(vlist)}”,
where (vlist) is a sequence of instructions that specifies a vertical list of boxes and glue.
If such an inscrtion is made when TEX is in vertical mode, the specified vertical list
will be contributed to the first page on which there is room for it. If such an insertion
is made when TEX is in horizontal mode, the specified vertical list will be contributed
to the same page on which the line containing the insertion appears. A \topinsert
is contributed at the top, a \botingert at the bottom. Glue specified by \topskip
(glue) will be placed just below every \topinsert; glue specified by \botskip{(glue)
will be placed just above every \botinsart.

You may be wondering how things like page numbers get attached to pages. Actually
TEX has two levels of control: when a complete page has been built, this page
is packaged as a box and another scction of TiX input code comes into action. The
designer has specified this other piece of code by writing “\output{...}", and we will

60 Chapter 15

discuss the details of \output routines in Chapter 23. For now, it should suffice to give
just a small taste of what an \output routine looks like:

\output{\baselineskip 20pt
\page\ctrline{\:a\count0}\advecounto}

This routine (which appears in Appendix B) takes the current page number, typeset in
font a, and centers it on a new line below the contents of the current page; “\page”
means the current page, “\count0” mcans the current page number, and “\advcount0”
advances this number by 1. The bascline of the page number will be 20 points below
the baseline of the page—assuming that \maxdepth has becn sct small enough that
this is always possible. This setting of \baselineskip will be retracted at the end of
the \output routine, according to the normal conventions of grouping; thus there will
be no effect on TEX's page-building operations (which go on asynchronously).

<16> Typing math formulas

TEX was designed to handle complex mathematical formulas in such a way that
most of them are easy to input. The basic idea is that a complicated formula is
composed of less complicated formulas put together in a simple way, and these
less complicated formulas are in turn made up of simple combinations of formulas
that are even less complicated, and so on. Stating this another way, if you know
how to type simple formulas and how to combine formulas into larger ones, you
will be able to handle virtually any formula at all. So let's start with simple ones
and work our way up.

The simplest formula is a single letter, like “z”, or a single number, like “2".
In order to enter these into a TiX text, you type “x" and “2", respectively.
Note that all mathematical formulas are enclosed in special math brackets, and
we are using $ as the math bracket in this manual, in accord with the basic TEX
format defined in Appendix B. Note further that when you type “x” the “z”
comes out in italic type, but when you type “$23%" the “2" comes out normally.
In general, all characters on your keyboard have a special interpretation in math
formulas, according to the normal conventions of mathematics printing. Letters
now denote italic letters, while digits and punctuation denote roman digits and
punctuation; a hyphen (-) now denotes a minus sign (—), which is almost the
same as an em-dash but not quite (secc Chapter 2). So if you forget one $ or type
one $ too many, TEX will probably become thoroughly confused and you will
probably get some sort of error message.

Typing math formulas 81

Formulas that have been typeset by a printer who is unaccustomed to doing
“mathematics usually look quite wrong to a mathematician, becayse a novice
printer usually gets the spacing all wrong. In order to alleviate this problem, TEX
does most of its own spacing in math formulas; and it ignores any spaces you
type between $'s. For example, you can type “$ x$" and “$ 2 $" and they
will mean the same thing as “x" and “2"; you can type “$(x + y)/(x -
y)$" or “$(x+y) / (x—y)$", but both will result in “(z + y)/(z — y)". Thus,
you are free to use blank spaces in any way you like. Of course, spaces are still
used in the normal way to mark the end of control sequences, as explained in
Chapter 7. In most circumstances TiX's spacing will be what a mathematician
is accustomed to; but we will sec in Chapter 18 that there are control sequences
by which you can override TiX's spacing rules if you want.

One of the things mathematicians like to do is make their formulas look like
Greck to the uninitiated. In TiX language you can type “$$\alpha, \beta,
\gamma, \delta;$$" and you will get the first four Greek letters

a’ﬂ"”s;

furthermore there are upper case Greek letters like “I', which you can get by
typing either “Γ” or “§\GAMMAS". A few of the Greek lctters deserve spe-
cial attention: For example, lower case epsilon (¢) is quite different from the symbol
used to denote membership in a set (€); type “ϵ” for ¢ and “\in”
for €. Furthermore, three of the lower case Greek letters have variant forms
on TEX's standard italic fonts; “(ϕ,θ,ω)" yields “(¢,6,w)"
while “$ (\varphi,\vartheta,\varomega)$" yields “(p, 9,)".

Besides Greck letters, there are a lot of funny symbols like “~" (which you
get by typing “\approx”) and “—" (which you get by typing “\mapsto").
A complete list of these control sequences and the characters they correspond to
appears in Appendix F'. The list even includes some non-mathematical symbols like

§ t 31 9 © 8 ¢

which you can get by typing “\section”, “\dag", “\ddags", “\P",
“\copyright”, “$\$$", and “\sterlings”, respectively; nearly all of the
special symbols that you'll ever want are available in' this way. Such control
sequences are allowed only in math mode, i.e., between $'s, even when the cor-
responding symbols aren't traditionally consxdered to be mathematical, because
they appear in the math fonts.

Chapter 16

Now let's see how more complex formulas get built up from simple ones. In
the first place, you can get superscripts and subscripts by using “t" and “4";

Type and you get
$xT2$ z?
$xl2$ Fo)
$21Tx$ 2®
$xT2yT2$ z2y?

$x T 2y T 28 z?y?
$x42yi2% kY0
$L2F43$ oF3

Note that T and { apply only to the next single character. If you want several
things to be subscripted or superseripted, just enclose them in braces:

$xT{2y}$ T
$2T{2Tx}$ | 27"
$21{21{2Tx}>$ 92"
$x1{yl2}$ Ty,
$xi{yT2}$ T,

It is illegal to type “xTyT2z" or “xiyiz" (TEX will complain of a “double
superscript” or “double subscript”); you must type “xT{y*z}" or “{xTy}Tz" or
“xT{y2z}" in order to make yourintention clear. (Some commonly-used languages
for math typesetting treat xTyTz as xT{y Tz} and others treat it as {xTy}Tz or
xT{yz}; the ambiguous construction isn't needed much anyway, so TgX disallows
it.)

A subscript or superscript following nothing (as in the “42Fi3" example
above, where the 12 follows nothing) is taken to mean a subscript or superscript
of an empty box. A subscript or superscript following a character applies to that
character only, but when following a box it applies to that whole box; for example,

$ ¢ (xT2) 13) T4$ ((z’)3):
$C({(xT2)313) 3148 ((=2)°)

| Typing math jormulas 83

In the first formula the T3 and T4 are superscripts on the right parentheses, but
in the second formula they are superscripts on the formulas enclosed in braces.

You can have simultaneous subscripts and superscripts, and you can specify
them in any order:

$x1243% 23
$x13728$ 2l
$xT{3141534{92}+\pi$ 35 Ly
$xi{yTalb}T{zicTd}$ z'y%

Note that simultaneous sub/superscripts are positioned over each other, aligned
at the left.

The control sequence \prime stands for the character */’, which is used
mostly in superscripts. Here's a typical example:

$yiiT\prime+yi2T{\prime\prime\prime}$ vi+ vy

Another way to get complex formulas from simple ones is to use the control

sequences \sqrt, \underline, or \overline. These operations apply to the
character or group that follows them:

$\sqrt2s$ V2
$\sqrt{x+2}$ VZF2
$\underline4$ 4
$\underline{\underlined}$ 4
$xT{\underline n}$;n

$\overline{xT3+\sqrt3)$ z3 4+ /3

If you nefad cube roots (or nth roots), TiEX has no built-in mechanism for this. But
you can insert a 3 (or n) over a square root sign by using Appendix B's control
sequence \spose for superposition. Type

\spose{\raise{dimen)\hjust{\nhskip(dimen)$\scriptacriptstyla{root)$>}

followed by. \sqrt. Xy where you can figure out appropriate dimensions by fiddling
around until the position looks right. (These dimensions depend on the size of the
formula, the current size of type, and the size of the square root sign.) For example,

“y/5" can be set with TEX's normal 10-point fonts by typing
$\spose{\raisespt\hjust{\hskip2.Bpts\ecriptacriptatyl 035} H\eqres$

64 Chapter 16

Accents in math mode work something like \overline; you can accent a single
character or a formula. (But the formula had better be short, since a tiny accent
will be centered over the whole thing.) For example,

$\=x+\overiine x+\b x+\A x+\& x+\s{\s x}+\A{x+yr+eT{\=x}$
produces 2+ Z -+ 242 +E+Z4+zFy-+e. ‘
»Exercise 16.1: What would you type to get the following formulas?
27t (1) Vi—@ w¥E o, S
»Exercise 16.2: What's wrong with typing the following?
If$ x = y$, then x is equal to $y.$
»Exercise 16.3: Explain how to type the following sentence:

_ Deleting an element from an n-tuple leaves an (n — 1)-tuple.

<17> More about math

Another thing mathematicians like to do is make fractxons-—-and they also like
to build up symbols on top of each other, as in

3
n+1 n-41
and 3 and [3] and 231 Zy,

BN =

You can get these four formulas by typing “$$1\over 2$$" and “$$n+1\over
3$$" and “$$n+1\comb[] 3$$" and “$$\sumi{n=1}13 Zin$$"; weshall study
the simple rules for such constructions in this chapter.

First let's look at fractions, which use the “\over" notation. The control
sequence \over applies to everything in the formula unless you enclose \over

More about math : 85

in a { } group; in the latter case it applies to everything in that group.

v

Type and you get

2
$$x+yT2\over k+1$$ %Ll

2
$$x+{yT2\over k}+1%$$ z 4 yE— +1

2

$$x+{yT2\over k+1}$$ T4 E.i_l.
$$x+yT{2\over k+1}$$ z 4 y"T

You aren't allowed to use \over twice in the same group; instead of typing a
formula like “a \over b \over 2", you must specify what goes over what:

$${a\over b}\over 2%$$

$$a\over{b\over 2}%$$

o R N or

Note that the letters get smaller when they are fractions-within-fractions,
just as they get smaller when they are used as exponents. It's about time that
we studied how TiEX does this. Actually TEX has eight different styles in which
it can treat formulas, namely

display style (for formulas displayed on lines by themselves)
text style (for formulas embedded in the text)

script style (for formulas used as superscripts or subscripts)
scriptscript style (for sccond-order superscripts or subscripts)

and four other styles that are almost the same except that exponents aren't raised
quite so much. For brevity we shall refer to the eight styles as

D,T,S, SS,D, T, &, SS,

66 Chapter 17

so that T is text style, I’ is modificd display style, etc. TEX also uses three sizes
of type for mathematics, called text size, script size, and scriptscript size (¢, s,
and ss).

The normal way to typeset a formula with TEX is to enclose it in dollar signs
$...8, which yields the formula in text style (style T), or to enclose it in double
dollar signs $$...$$, which displays the formula in display style (style D). Once
you know the style, you can dctermine the size of type TX will use:

If a letter is in style then it will be set in size

D,T,D,T t
S,8' §
SS,8S' §8

There is no “SSS" style or “sss” size; such tiny symbols would be even less
readable than the ss ones. Therefore TEX stays with ss as its minimum size, as
shown in the following chart:

In a formula the superscript and the subscript

of style style is style is
D,T . S S
S,S8S SS Ss’
DT s’ S’
Y SS' SS!

Forexample, if xt{alb} isinstyle D, then {aib} isin style S, and bisin style SS'.

So far we haven't seen any difference between styles D and 7. Actually there
is a slight difference in the positioning of exponents: you get z2 in D style and
z? in T style and z2 in D’ or T’ siyle—do you see the difference? But there is a
big distinction between D style and T style when it comes to fractions:

In a formula the style of the and the style of the
a\over 3 of style numerator a is denominator 8 is
D T T
T S S’

S,SS SS 4 Ss!
D T T
T s S’

S, S8’ Ss' Ss'

More about math 87

Thus if you type "$1\over2$" (in a text) you get 4, namely style S over style
S'; but if you type “$$1\over2$$" you get

'

!

(a displayed formula), which is style T over style T",
When a fraction like $x+y\over z$ is put into the text of a paragraph, the

letters are rather small and hard to read: f::’;". So it is usually better to type
the fraction in the mathematically equivalent way “$ (x+y)/2$", which comes
out “(z + y)/#". In other words, \over is useful mostly for displayed formulas
or for numeric {ractions.

While we're at it, we might as well finish the style rules: \underline does not
change the style; \sqrt and \overline both change D to I¥, T to T, S to &, §S
to SS', and leave IV, T, §', SS' unchanged.

There's another operation “\atop", which is like \over except that it leaves
out the fraction line:

I

y+2

The basic math definitions in Appendix B also define “\choose", which is like
\atop but it encloses the result in parentheses:

$$x\atop y+28%$

$$n\choose k$$ (:)

This is a common notation for the so-called “binomial coefficient” that tells how
many ways there are to choose k things out of n things; that's why the control
sequence is called \choose.

You can't mix \overand \atop and \choose with each other. For example,
“$$n \choose k \over 2$$" is illegal; you must use grouping, to get either
“$${n \choose k} \over 2$$" or “$$n \choose {k \over 2}$$", i.e,

T o ()

88 Chapter 17

The latter formula, incidentally, would look better as “$$n \choose k/2$$"
or “$$n \choose {i\over2}ks", yielding

(k72) . (ﬁc)

Suppose you don't like the style TiX selects by its automatic style rules.
Then you can specify the style you want by typing

\dispstyle or \textstyle or \scriptstyle or \scriptscriptstyle.

For example, if you want the (:) to be larger in the formula $${n\choose
k}\over 288$, just type “$$\dispstyle{n\choose k}\over 2$$"; you will

;)

—

2

because the numerator of the formula is now “\dispstyle{n\choose k}".
Here's another example (admlttedly a rather silly one): $$n+\scriptstyle n
+\scriptscriptstyle n$$ gives

n +n+n

Note that the plus signs get smaller too, as the style changes; and there's no
space around -} signs in script style.

»Exercise 17.1: Explain how to specify the displayed formula
P\ 2 p—-2___1 1
(2):1: 4 l—z]—z?

There are two other variants of \over, \atop, etc. First is “\above(dimen)",
which is just like \over but the stated dimension specifies the exact thickness of
the line rule. For example,

$$\dispstyle{x\over y)\above 1pt\dispstyle{w\over z)$$

More about math 89

will produce

wigjen

this sort of thing was once customary in arithmetic textbooks, but nowadays it is rare
(at least in pure mathematics). The sccond variant is a generalization of \choose: You
can write “\comb{dclim)(delim)", specifying any of the delimiters listed in Chapter 18;
" chooge” is the same as “\comb ()", and one of the examples at the beginning of this
section used “\comb(]".

When you use \over, \atop, etc., the numerator and denominator are centered

over cach other. If you prefer to have the numerator or denominator at the left,
follow it by “\hf111"; if you prefer to have it at the right, precede it by “\nfi11”.
For example, the specification

$$i+{1\nfill\over\dispstyle aii+{1\hfill\over\dispstyle
ai2+{1\hfill\over\diepstyle ai3+{i\over aid}}))s

yields

while without the \hfi11s you get

1+
a4 N
a+

a + 1
a4

Mathematicians often use the sign Y to stand for “summation” and the sign
f to stand for “integration.” If you're 8 typist but not a mathematician, all you
need to remember is that \sum stands for 3 and \int for [; these abbreviations
appear in Appendix F together with all the other symbols, in case you forget.

70 Chapter 17

Symbols like 3 and [(and a few others like | J and] and § and @, all listed
in Appendix F) are called large operators, and you type them just as you type
ordinary symbols or letters. The difference is that TEX will choose a larger large
operator in display style than it will in text style. For example,

$\sum xin$ yields >z, (T style)
$$\sum xin$$ yields Zzn (D style).

Usually 3 occurs with “limits,” i.e., with formulas that arc to appear below
it or to the right. You type limits just the same as superscripts and subscripts:
for example, if you want

n==}

you type either “$$\sumi{n=13Tns" or "$$\sumnTni{n=12$3$". According to
the normal conventions of mathcmatics, TEX will change this to “3°7°_ " if in
text style rather than display style.

Integrations are slightly different from summations, in that the limits get set
at the right even in display style:

$\inti{-w}T{+u}$ vields [T (T style)
“+o0
$$\inti{-w)rT{+w}$$ yields / (D style).

Note further that the subscript is not directly below the superscript, in either
style; again, this is a mathematical convention that TEX follows automatically
(based on information stored with the fonts).

@ Some printers prefer to set limits above and below [signs; similarly, some prefer

to sct limits to the right of) signs. You can change TX's convention by simply
typing “\limitewitch” after the large operator. Fo; example,
-+o0

$$\int\limitewitchi{-m)}T{+u)$$ yields [

. —00

m

$$\sum\limitewitchi{n=1)1tn$$ yields

o e |

Fine poins of mathematics typing 71

If you have to put two or more rows of limits under a large operator, you can do
this by using “\atop”. For example, if you want the displayed formula

Yo PG
o<<i<m
o< j<n

the correct way to type it is
$$\sumi{\scriptetylao<igm\atop\scriptatyla0<j<n}P (i, J)$$

(perhaps with a few more spaces to make it look nicer in the manuscript file). Note that
the instruction “\scriptstyle” was necessary here, twice—otherwise ‘0 < i S m”
and “0 < j < n" would have been in scriptscript size, which is too small. This is one
of the rare cases where TEX's automatic style rules need to be overruled.

' p 9 T
»Exercise 17.2: How would you type the displayed formula Z 2 E aibjucks !
s=])=l k==1

@ »Exercise 17.3: And how about Z Gisbikcki T

< 18> Fine points of mathematics typing

We have discussed most of the facilities needed to construct math formulas, but
there are several more things a good mathematical typist will want to watch for.

L, Punctuation, When a formula is followed by a period, comma, semicolon,
colon, question mark, exclamation point, etc., put the punctuation after the $,
when the formula is in the text; but put the punctuation before the $$ when the

formula is displayed. For example,

\

If $x<0$, we have shown that $$y=f(x).$$

The reason is that TEX's spacing rules within paragraphs work best when the
punctuation marks are not considered part of the formulas.

72 Chapter 18

Similarly, don't type something like this:
for $x = a, b$, or c.

It should be

for $x a$, b, or c.

The reason is that TiX will always put a “thin space” between the comma and
the bin $x = a, b$. Thisspace will probably not be the same as the space TEX
puts after the comma after the b, since the sccond comma is outside the formula;
and such unequal spacing would look bad. When you type it right, the spacing
will look good. Another reason for not typing “$x = a, b$" is that it inhibits
the possibilities for breaking lincs in a paragraph: TEX will ncver break at the
space between the comma and the b because breaks after commas in formulas
are usually wrong. For example, in the equation “$x = f(a, b)$” we certainly
don't want to put “z = f(a,"” on one line and “b)" on the next.

Thus, when typing formulas in the text of a paragraph, keep the math
properly segregated: Don't take operators like — and = outside of the $'s, and
keep commas inside the formula if they are truly part of the formula. But if a
comma or period or other punctuation mark belongs linguistically to the sentence
rather than to the formula, lcave it outside the $'s.

2. Roman lctters in formulas, The names of algebraic variables in formulas
arc usually italic or Greck letters, but common mathematical operators like “log”
are always set in roman type. The best way to deal with such operators is to make
use of the following control sequences defined in the basic format of Appendix B:

\cos \exp \lim \log \sec
\cot \ged \liminf \max \sin
\csc \inf \limsup \min \sup
\det \lg \1ln \Pr \tan

The following examples show that such control sequences lead to roman type as

Fine points of mathematics typing 73

desired:
Type and you get «
$\sin2\theta=2\sin\theta\cos\theta$ sin 20 == 25in 0 cosf
$0(n\log n\log\log n)$: O(nlog nlog log n)
$\exp (-xT2)$ | exp(—z?)
$$\maxi{1<n<m}\10gi2Pin$$ max logy Pn
1<n<m
. ‘ . sinz
$$\1imi{x+0}{\sin x\over x}=1$$ lim —— == 1
. g0 T

In the second example, note that O is an upper case letter “oh”, not a zero; a
formula should usually have “0" instead of 0" when a left parenthesis follows.
The fourth and fifth examples show that some of the special control sequences
are treated by TEX as “large operators” with limits just like }; compare the
different treatment of subscripts applied to \max and to \1og.

Another way to get roman type into mathcmatical formulas is toinclude constructed
boxes (cf. Chapter 21); such boxes are treated the same as single characters or
subformulas. For example,

$\exp(x+\hjust{constant})$ yields exp(z - constant)

The fonts used inside such boxes are the same as the fonts used outside of the math
brackets §...$; the characters do not change size when the style changes.

@ »Exercise 18.1: Explain how to type the phrase “nth root”, where “nth” is treated
as a mathematical formula with a superscript. The letters “th” should be in font d.

There is, of course, a way to specify characters that do change size with changing

stylcs; you can do it with the \char command. We studied \char in Chapter
8, but \char works a little differeutly in math mode because math mode deals with
up to ten fonts instead of just one font. TEX keeps three fonts for text size, three for
script size, and three for scriptscript size, plus one font for oversize and variable-size
characters. The three fonts of changing size are called rm, 1t, and sy fonts—short for
roman, italic, and symbols, according to TiX's normal way of using these fonts; and the
oversize font is called the ex font. (The rm and it fonts arc essentially normal fonts
like all other fonts TEX deals with, but each sy and ex font must have special control

74 Chapter 18

information stored with it, telling TEX how to do proper spacing of math formulas.
Thus, TEX is able to do math typcsetting on virtually any style of font, provided that
the font designer includes these parameters.) To specify which fonts you are using for

mathematics, you type
\mathrm (font){font){font)

\mathit (font){font){font)
\mathsy (font){font){font)
\mathex {font)

before getting into math mode, where the rm, 1t, and sy fonts are specified in the order
text size, script size, scriptscript size. For example, by typing “\mathit tpk” you are
saying that TEX should use font t as the it font in text size math, font p as the it font
in script size math, font k in scriptscript size math. If you don't use scriptscript size in
your formulas, you must still specify a font, but you could say “\mathit tpp” or even
“N\mathit ttt”. (When you specify a font letter for the first time you must follow it
with the font file name, as described in Chapter 4; c.g., “\mathit tecmill pecmi?
p" would work. But it's best to declare all your fonts first, before specifying the ones
to be used for math.) Now... about that “\char" operation in math mode: Although
\char selects up to 128 characters in non-math modes, it sclects up to 512 characters
in math mode. Characters ‘000 to ‘177 are in the rm font of the current size, ‘200
to “377 are in the it font of the current size, “400 to “577 are in the sy font of the
current size, and 600 to “777 are in the ex font. For example, the “dangerous bend”
road symbol is in the ex font being used to typeset this user manual, and it is actually
character number “177 in this font, so it is referred to by typing “$\char-777$". The
symbol oo is character number ‘6! in TEX's standard symbol fonts; in math mode you
can refer to it cither as “\infty” or as “\char-461", or simply as “w" if you happen
to have this key on your keyboard.

TEX fonts used for variables (“it" fonts) have spacing appropriate for math for-
mulas but not for italic text. You should use a different font for “italicized words”
in the text. For example:

This sentence is in jont cmil0, which s indended for formulas, not text.
Thus sentence is in font cmiil0, which is intended for text, not Jormulas.

3. Large parentheses and other delimiters. Since mathematical formulas can

get horribly large, TEX has to have some way to make ever-larger symbols. For
example, if you type

$$\sqre{1+\sqrie{i+\sqre{i+
\sqri{i+\aqri{i+\sqri{i+\aqre{1+x}>>>3>3$$

Fine points of mathematics typing . 15

the result shows a variety of available square-root signs:

14+ 1+J1+\/1+\/1+\/1+\/I‘.g‘_;

The three largest signs here are all essentially the same, except for a vertical
segment “ |" that gets repeated as often as necessary to reach the desired size;
but the smaller signs are distinct characters found in TEX's math fonts.

A similar thing happens with parentheses and other so-called “delimiter”
symbols. For example, here are the different sizes of parentheses that TEX might

use in formulas:
((((((((«))))))))))

The three largest pairs are made with repeatable extensions, so they can become

as large as nccessary.
TI:}X chooses the correct size of square root sign by sin]p]y using the smal-

lest size that will enclose the formula being \sqrted, but it does not use large
parenthcses or other delimiters unless you ask it to, If you want to enclose a
formula in variable-size delimiters, type

\lef t{delim;) (formula) \right{delimg)

where each (dclim) is one of the following:

. blank () | vertical line (])

C left parenthesis (() \| double vertical line (||)

> right parcnthesis ()) \langle or < left angle bracket { {)

[left bracket ([) ' \rangle or > right angle bracket ())

1 right bracket (]) \1floor left floor bracket (|)
\{ lcft brace ({) ' \rfloor right floor bracket (])
\} right brace (}) \lceil left ceiling bracket ([)

/ slash (/) \rceil right cciling bracket (])

76 Chapter 18

For example, if you type “$$1+ \left(i\overi~xT2 \right) 13%$$" you

will get
1\
' +(1 —x?)

Notice from this example that \left and \right have the cflect of grouping
just as { and } do: The “\over" operation does not apply to the “1+" or to
~ the “t3", and the “73" applies to the entire formula enclosed by \l1eft (and
\right). | .

When you use \left and \right they must match each other, nesting like
braces do in groups. You can't have \left in onc formula and \right in another,
nor can you type things like “\left(...{...\right)...}". This restriction
makes sense, of course, but it is worth explicit mention here because you do not
have to match parecntheses and brackets, etc., when you are not using \left
and \right: TEX will not complain if you input a formula like “$[0,1)$" or
even “$) ($”. (And it's a good thing TiX doesn't, for such unbalanced formulas
occur surprisingly often in mathematics papers.) Even when you are using \left
and \right, TEX doesn't look closely at the particular delimiters you happen to
choose; thus, you can type strange things like “\left)"” and/or “\right (" if
you know what you're doing. Or even if you don't.

If you type “\left."” or “\right.", the corresponding delimiter is blank—
not there. Why on earth would anybody want that, you may ask. Well, there
are at least two reasons. One is to take care of situations like this:

] = z, if z Z 0;
—2z, if z << 0.
The formula in this casc could be typed as follows: %

$$IxI=\left\{ ... \right.$$

where “. . ." stands for a TEX box containing the text
T, Wz >0
—Z, if <0,

Later in this chapter we shall discuss how you might specify such a box; just now
we are simply trying to discuss the use of a blank delimiter.

Fine points of mathematics typing 71

The second example of a blank delimiter occurs when you want a variable-
size slash; type either “\left/ ... \right.” or "\left. ... \right/",
whichever will make the correct size slash (i.c., a slash that is just big enough for
the formula enclosed between \left and \right). For example, if you want to

get the formula
a+1 fc+1
b d

you can type either “$$\left. a+i \over b \right/ {c+i\over d}>$s”
or “$${a+1\over b} \left/ c+i \over d \right.$$".

A third example, which occurs less often, is the problem of getting three large
delimiters of the same size, as in a formula of the form “[a | § " where a and 8
are large formulas and, say, a is bigger than 8. You can type

\left.\left[a\right| S \right]

to handle this. Note that a construction like “\left(\left(... \right)\right)”
will always produce double parentheses of the same size.

The size chosen by TEX when you use \left and \right is usually ap-
propriate, but there is an important exception: When the \left and \right
enclose a displayed Y or [, etc., with upper and/or lower limits, TEX will often
make the delimiters much too large. For example, if you type

$$\left (\sumi{i=1}Tn Ali \right)T2$$
the result is 2

>4

tm==]

(rather shocking). The reason is that TiX adds extra blank space above and below
the limits so that they don't interfcre with surrounding formulas; usually this is
the right thing to do, except when large delimiters are involved. In fact, most
math compositors prefer to'let the limits on) 's protrude above or below any
enclosing parentheses, 5o \l1eft and \right aren't really the proper things to
type anyway. What you should do is use control sequences such as \bigglp and

78 Chapter 18

\biggrp, which are defined in the basic TgX format (Appendix B). When the
above example is retyped in the form

$$\bigglp \sumi{i=1)Tn Ali \biggrpT2$$

it will come out right:

£4)

1==]

Incidentally, basic format also defines two other useful sizes of parentheses,
for those occasions when you wish to control the size by yourself in a convenient
manncr: \biglp and \bigrp produce parcnthescs that are just a little bit bigger
than normal ones, while \biggglp and \bigggrp produce really big ones. Here
is a typical example of a formula that uscs \biglp and \bigrp:

(2 — s(2))(y — s(v))-

»Excrcise 18.2: Explain exactly how to type this formula so that TEX would
typeset it as shown.

Instead of using “bigg” delimiters, there is another way to get TEX to choose a

more reasonable size with respect to displayed Y 's with limits, namely to fool TEX
into thinking that the formulas aren’t as big as they really are. Using Appendix B, type
“\chop to (dimen){(formula)}" to produce a box containing the specified formula in
display style but with the depth of the box artificially assumed to be the specified
dimension. The (dimen) must be in points (pt). For example,

\sqrt{\chop to 9pt{\sumi{ig<k<n}Aik}}

‘/ Z A
1<k<n

yields

Fine points of mathematics typing 78

You can also access other delimiters that might be present in your fonts by using

the versatile \char command. We saw above that \char has an extended meaning
in math mode; its meaning is even further extended when used to specify delimiters.
Besides the options listed above, any {dclim) can be “\char “¢ic;" where ¢; and ¢3 are
three-digit octal codes; ¢; is the code for this delimiter in its smallcr sizes {rm, i¢t, or
sy fonts) and c; is the code for this delimiter in the ex font. For example, it turns out
that the left brace delimiter can be specified as \char 546610, since a normal size left
brace is character ‘146 in the sy font, and since all oversize left braces are reachable
starting at character ‘010 in the ex font. (Characters in an ex font are internally
linked together in order of incrcasing size.) You should let ¢1 or ¢z equal 000 if there is
no corresponding character. TiX handles variable-size delimiters in the following way:
If ¢; 54 000, the first step is to look at math character ‘¢ in the current size, then in
any larger sizes. (For example, in script style TEX looks first at script size character
‘cy, then at the corresponding character in text size.) If ¢z 74 000, the next step is to
look at all characters linked together in the ex font, starting at “cs, in increasing order
of size. (This linked list might cnd with an extensible character.) The first character
TiX sees that is large enough (i.e., 2 the desired size) is chosen. Special note to those
who have read this far: Standard ex fonts for TiX often contain the “left pretzel” and
“right pretzel” delimiters that you can get by typing

\left\char 0000658 and \right\char 000657,

respectivcly. Startle your friends by using these instead of parentheses around your
big matrices, or try typing “$$\left\char-656\quad\vcente r{\hjust to 250pt{
. several santences of text ... }}\quad\rxght\char'557s$".

4. Spacing, Chapter 16 says that TEX docs automatic spacing of math for-
mulas so that they look right, and this is almost true, but occasionally you must
give TEX some help. The number of possible math formulas is vast, and TEX's
spacing rulcs are rather simple, so it is natural that exccptions should arise.
Furthermore there are occasions when you need to specify the proper spacing
between two formulas. Perhaps the most common example of this is a display
containing a main formula and side conditions, like

Fon=Fnp_1+Fn n=>2.

You need to tell TEX how much space to put after the comma.

80 Chapter 18

The traditional hot-metal technology for printing has led to some ingrained
standards for situations like this, based on what printers call a “quad” of space.
Since these standards seem to work well in practice, TEX makes it casy for you
to continue the tradition. When you type “\quad”, TX converts this into an
amount of space equal to a printer's quad, approximately the width of a capital
M. (The em-dash discussed in Chapter 2 is usually one quad wide; and one quad
in 10-point type is usually cqual to 10 points. This is where the name “quad”
comes from; it once meant a square picce of blank type. But of course a font
designer is frec to specify any sizes that he or she wants for the widths of quads,
em-dashes, and M's.)

The abbreviation “\qquad” is defined in Appendix B to be the same as
“\quad\quad", and this is the normal spacing for situations likc the F, example
above. Thus, the recommended procedure is to type

$$ Fin = Fi{n-1} + Fi{n-2}, \qquad n > 2. $$

It is perhaps worth reiterating that TEX ignores all the spaces in math mode
(cxcept, of course, the space after “\qquad”, which is needed to distinguish
“\qquad n" from “\qquadn”); so the same result would be obtained if you were
to type

$$Fin=Fi{n-1}+Fi{n-2},\qquad nd>2.$$

Thus, all spacing that differs from the normal conventions has to be specified
explicitly by control sequences such as \quad and \qquad.

Of course, \quad and \qquad are big chunks of space, more than the space
between words in a sentence, so it is desirable to have much finer units. The basic
elements of space that TiX deals with in math formulas ate often called a “thin
space” and a “thick space”, defined respectively to be § of a quad and 5 of a
quad. In order to get a feeling for these units, let's take a look at the Fy, example
again: thick spaces occur just before and after the = sign, and also before and
after the > sign. A thin space is slightly smaller, yet quite noticeable; it's a thin
space that makes the difference between “loglog” and “log log”.

TEX has variable glue, as we discussed in Chapter 12, so spaces in TFX's
math formulas actually can get a little thicker or thinner when a line is being
stretched or squeezed. Here is a precise chart telling about all the different kinds
of spaces that you can specify in math formulas:

Fine points of mathemalics typing 81

Control Name Spacing in Spacing in styles

sequence styles D, T, D', T’ s,s88,5', 88
\, Thin space (1/s, o, 0 (1/60,0)
\U Control space (2/9, 1/9, 2/9) (1/6,0,0)
\> Op space (2/9, 1/9, 2/9 (0,0,0)
\; Thick space (5/18, 5/18, ©0) (0,00
\quad Quad space (1, 0, 0) (1,0,0)
\2 Conditional thin space (1/6, o 0o (000
\! Negative thin space (~—1/8, 0, 0 (—1/6,0,0)
\? Negative thick space (—5/18,—5/18, 0) (0,0,0)
\< Negative op space (—2/9, —1/9,—2/9) (0,0,0)
\g Negative \2 (—1/8, o0 0o (000

(Don't try to memorize this chart, just plan to use it for reference in case of
need.) The spacing is given in units of quads; thus, for example, the entry
“(5/18,5/18,0)" for a thick space in D stylc mcans that a thick space in displayed
formulas is % of a quad wide, with a stretchability of f; quad and a shrinkability
of zero. Note that spacing is different in subscript or superscript styles: thick
spaces disappcar while thin spaccs stay the same. This reflects the fact that no
space surrounds = signs in subscripts, but there still remains a space in “loglog”
when you type “\log\log" in a script style.

The control sequences in this table are allowed only in math mode, except
that \quad is allowed also in horizontal mode. Actually \U and \! are used
in horizontal mode too, but with a different meaning explained earlier. It is
permissible to use \hskip explicitly in math mode, if you want to specify any
nonstandard glue.

As mentioned earlier, you will probably not be using any of these spaces very
much. You can probably get by with only an occasional \quad (or \qquad) and
an occasional thin space.

In fact, there arc probably only three occasions on which you should always
remember to insert a thin space (“\,"):

a) Before the dz or dy or dwhatever in formulas involving calculus. For example,
type “$\intiOTweTx\,dx$" to get “fo e*dz"; type “$dx\,dy=r\,dr\,
d\theta$” to get “dzdy =rdrdd”. (But type “dy/dx".) '

b) After square roots that happen to come too close to the following symbol.
For example, “$0\biglp 1/\sqrt n\bigrp$” comes out as “0(1/\/5)",

82 Chapter 18

but “$0\biglp 1/\sqrt n\,\bigrp$" yields “0(1/\/5)". And it some-
times looks better to put a thin space after a square root to separate it
visually from a symbol that follows: “v/2z" is preferable to “\/2z", so type
“$\sqrt2\,x$" instead of “$\sqrt2 x$".

c) After an exclamation point (which stands for the “factorial” operation in
a formula) when it is followed by a letter or number or left delimiter. For
example, “$(2n) !\over n!\, (n+1) 1$".

Other than this, you can usually rely on TEX's spacing until after you look at
what comes out, and it shouldn't be necessary to insert optical spacing corrections
except in rather rare circumstances. (One of these circumstances is a formula
like “log n (log log n)2", where a thin space has been inserted just before the left
parenthesis; TX inserts no space before this parenthesis, because similar formulas
like "log f(z)" want no space therc. Another case is a formula like “n/logn",
where a negative thin space has been inserted after the slash.)

Here are the rules TEX uses to govern spacing: The styles and sizes of all portions

of a formula are determined as explained in Chapter 17. We may assume that
the formula docsn't have the form “a\ovar 8" (or “a\atop 3", etc.), since numerators
and denominators of such formulas are treated separately. We may also assume that
all subformulas of a given formula have been processed already (using the same rules)
and replaced by boxes. (Subformulas include anything enclosed in { ... }, possibly
combined with \sqrt, \underline, \overline, or \accent; subformulas also include
anything enclosed in \left{delim;) ... \right{dclims), unless this turns out to be
the entire formula. Subscripts and superscripts are attached to the appropriate boxes,
and so any given formula can be reduced to a list of boxes to be placed next to each
other; all that remains is to inscrt the appropriate spacing. The boxes are divided into
seven categorics:

e Ord box; e.g., an ordinary variable like x, or a subformula like \sqrt{x+y} that
has already been converted into a box.

e Op box; e.g., a Y, sign (together with its limits, if any), or an operator like \log
that has already been converted into a box.

e Bin box; e.g., a binary operator like + or — or \times (but not /, which is treated
as “Ord"). '

e Rel box; e.g., an = sign or a < sign or a +.

e Open box; e.g., a left parenthesis or \1eft(delim).

e Close box; e.g., a right parenthesis or \right{delim).

83

Fine points of mathematics typing

e Punct box; a comma or semicolon (but not a period, which is treated as “Ord").

Every Bin box must be preceded by an Ord box or a Close box, and fo}lowe,d by an Ox:'d
or Op or Open box, otherwise it is reclassified as Ord. (For example, in “—w<'x+r<+°°l:
only the + of “x+y” is a Bin box; the two < signs are Rel boxcs, and a}ll other s.ymbs;s
are Ord boxes.) Now the spacing between any pair of adjacent boxcs is determined by
the following table:
Right box type
Ord Op Bin Rel Open Close Punct

Ord 0 \, B>\ 0
Op \, \, " \; 0

Left Bin » \> " “ \>
box Red | \; N+ 0 N\
type Open 0 0 " 0 0

OO F OO
OO % OO

Close 0 \, > \; 0
Punct 2 \2> * \; \2

P

v
-~
L4

Here “0” means no space is inscrted; “\,” is a thin spacc;.and so on. Table entries
marked “«" are never needed, because of the definition of Bin boxes.

@ For example, consider the displayed formula

| §8xry=\max\{x,)\}ARIN\Lx, Y\I$S
which is transformed into the sequence of boxes
cp=mx e, 0 GG .00
of respective types | : .
Ord,Bin,Ord,Rel,Op,Open,Ord,Punct,Ord,Close,Bin,Op,Open,Ord,Punct,Ord,ClOW-

Inserting the appropriate spaces according to the table gives

Ord\>Bin\>Ord\ ; Rel\ ; Op Open Ord Punct\2Ord Close
‘ \>Bin\>Op Open Ord Punct\20rd Close

and the resulting formula is

o F = o, o FF il)

ie.,
z + y = max{z, y} -+ min{z, y}

84 Chapter 18

This example docsn’t involve subscripts or superscripts; but subscripts and superscripts
merely get attached to boxes without changing the type of box. If you have inserted
any spacing yourself by means of \quad or \, or \hskip or whatever, TEX's automatic
spacing gets included in addition to what you specificd. Similarly, if you have included
\penalty or \eject or \« in a math formula, this specification is ignored for purposes
of calculating the automatic glue between components of formulas. For example, if you
type "'$... =\penalty100 x ...$", there is a Rel box (=) followed by a penalty
specification (which tends to avoid breaking lines here) followed by an Ord box (z), so
TEX inserts “\ ;" glue between the penalty and the Ord box.

You can make TEX think that a character or formula is Op or Bin or - or

Punct by typing one of the instructions \mathop{atom) or \mathbin{atom) or
\mathrel(atom) or \mathopen(atom) or \mathclose{atom) or \mathpunct(atom),
where (atom) is either a single character (like x), or a control secquence denoting a math-
ematics character (like \gamma or \approx), or “\char{number)”, or “{(formula)}”.
For example, “\mathopaen|” denotes a vertical line (absolute valuc bracket) treated as
an Open box; and

\mathop{\char-155\char-141\char-170}

stands for the roman letters “max” in a size that varies with the math style. Control
sequences like \mathop are used mostly in definitions of other control sequences for
common idioms; for example, “\max” is dcfined in Appendix B to be precisely the
above scquence of symbols. Note that there's no special control sequence to make a box
“ordinary”; you get an Ord box simply by enclosing a formula in braces. For example, if
you type “{+}" in a formula, the plus sign will be treated as an ordinary character like x
for purposcs of spacing. Another way to get the effect of “{+}" is to type “\char "53",
since characters entered with \char are considered ordinary.

5. Line breaking. When you have formulas in a paragraph, TEX may have to
break them between lines; it's something like hyphenation, a necessary evil that
is avoided unless the alternative is worse. Generally TEX will break a formula
after a relation symbol like = or < or «, or after a binary operation symbol
like + or — or X, if these are on the “outer level” of the formula (not enclosed
in {. ..} and not part of an “\over" construction). For example, if you type

$f(x,y) = xT2-y12 = (x+y) (x-y)$

in mid-paragraph, there's a chance that TEX will break after either of the = signs
(it prefers this) or after the — or + or - (in an emergency). Note that there won't

Fiine points of mathematics typing 85

be a break after the comma in any case—commas after which breaks are desirable
shouldn't ever appear between $'s. If you don't want to permit breaking in this

example except after the = signs, you could type !
$f(x,y) = {xT2-yT2} = {(x+y) (x-y)}$.

But it isn't nccessary to bother worrying about such things unless TEX actually
does break a formula badly, since the chances of this are pretiy slim.

There's a “discretionary hyphen” allowed in formulas, but it means multiplication:

If you type “$ (x+y) \»(x-y)$", X will treat the \# something like the way it
treats \—; namely, a line break will be allowed at that place, with the hyphenation
penalty. However, instead of inserting a hyphen, TEX will insert a X sign in the current
size. - -
@ The penalty for breaking after a Rel box is 50, and the penalty for breaking after a

Bin box is 95. These penaltics can be changed either by typing “\penal ty(number)”
immediately after the box in question (thus changing the penalty in a particular case)
or by using \chpar as explained in Chapter 14 (thus changing the penalties applied at
all subsequent Rel and/or Bin boxes of math formulas enclosed in the current group).

8. Ellipses (“three dots”). Mathematical copy looks much nicer if you are
careful about how “three dots" are typed in formulas and text. Although it

looks fine to type “..." on a typewriter with fixed spacing, the result looks too
crowded when you're using a printer's fonts:

“Ex...y$" results in “z..y",
and such close spacing is undesirable except in subscripts or superscripts.

Furthermore there are two kinds of dots that can be used, one higher than the
other; the best mathematical traditions distinguish between these. It is generally

correct to produce formulas like
$1+"-’+zn and (zl’ooo’zn),
but wrong to produce formulas like

zZ+..t2n and @1y +) Zn).

88 - Chapter 18

When using TiX with the basic control sequences in Appendix B, you can
solve the “three dots” problem in a simple way, and everyone will be envious of
the beautiful formulas you produce. There are five main control sequences:

\ldots three low dots (...);

\cdots three center dots (++-);

\ldotss three low dots followed by & thin space;

\cdotss three center dots {ollowed by a thin space;

\ldotsm three low dots preceded and followed by thin spaces.

Of these, “\cdots” and "\1dotss" are the most commonly used, as we shall see.

In general, it is best to use center dots between -+ and — signs, and also
between == signs or < signs or « signs or other similar rclational operations.
Lower dots are used between commas and when things are juxtaposed with no
signs at all. Here are the recommended rules for using the above control sequences:

a) Use \cdots between signs inside of a formula; use \cdotss just before
punctuation at the end of a formula. Examples: “$xl1=\cdots=xin=0$";
“the infinite sum $yli+yi2+\cdotss$.". (The extra thin space in
\cdotss will make the second example look better than if \cdots had
simply been used.)

b) Use \1dotss before commas. Example:

The vector (xii, \ldotss, xin) is composed
of the components $x41$, \ldotss, xin.

This example deserves carcful study. Note that the commas in the “vector”
are part of the formula, but in the list of the components they are part of
the sentence. Note also that you must be in math mode when using \1dotss.

c) Use \ldotsm in “multiplicative" contexts, i.e., when three dots are used
with no surrounding operator sign. Examples:

$x¢1x¢2\1dptsm x4in$; $(1-x) (1-x12)\ldotsm (1-xTk) $.

Exception: Type “$xTixT2\ldotes xTn$", because this formula when
typeset (z'z%...z") already has a “hole” at the baselinc after z2.

B

87

Fine points of mathematics typing

d) Use \1dots in those comparatively rare cases where you want three low‘t’:r
dots without a thin space before or after them. Example: “$ (\l1dots)$".

e) Use \cdotss between integral signs. Example:

$$\intl0T1\cdotss\intlOT1
f(xi1,\ldotss,xin)\,dxi1\ldotsn dxin.$$

f) Use “$\1dotss\,$." when ascntence ends with three lower dots. Exa.:nple:
“The periodic sequence 0, 1, 0, 1, O, 1, $\1dotses\,$.

7. Handling vertical lines, Besides the “idioms" represented by \cdot? and
\ldotss, there are a few other situations that can be typesct more beautifully

with a little care. A vertical line “|” and a double vertical line “||" are used for
several different purposes in math formulas, and TEX will sometimes fio a better
job if you tell it what kind of a vertical line is meant. The following control

sequences will help you in this task:

\leftv vertical line used as a left parenthesis;
\rightv vertical line used as a right parenthesis;
\relv vertical line used as a relation.

For example, “$$\leftv +x \rightv = \leftv -x \rightvs" specifies

the displayed equation
[+a| = |—2]

If this equation had been typed “$$ |+x |=]~x|$$" the spacing wo
quite wrong, namely '

because the |'s get the same spacing as ordinary variables like x when you h&ve.n't
specified them to be \l1eftv or \rightv or \relv. Compare also the following

two formulas: :
alb aldb ;

$a\relv b$ ald

There are three more control sequences \1eftvv, \rightvv, and \relvv, which
do the same for double vertical lines.

uld have been

88 Chapter 18

Appendix B defines two control sequences of use when specifying formulas like
{z]22>5}

The best way to type this is “$$\leftset x \relv x>5 \rightset$$", be-
cause \leftset and \rightset introduce braces with spacing to match the
spaces surrounding the \relv,

8. Number theory. To specify a formula like “z == y + 1 (mod p?)", type
“$x\eqv y+1\mod{pT2}$", using the control sequences \eqv and \mod defined
in Appendix B. Note that you don't type the parentheses in this case; the control
sequence provides them for you, with proper spacing and line-breaking conven-
tions. (There is also a control sequence “\neqv" that produces the inequivalence
symbol “52£".) To specify the formula

ged(m, n) = ged(nmod m, m)

type “$3\gcd(m,n)=\gcd(n\modop m, m)$$", using the control sequences
\gcd and \modop. (Actually this latter formula would look slightly better if
“\.," were inscrted after the second .comma.)

9. Matrices. Now comes the fun part. Many different kinds of matrices
are used in mathematics, and you can handle them in TX by using the general
alignment procedures we shall be studying in a later chapter. For now, let's
consider only simple cases. Suppose you want to specify the formula

zT— A\ 1 0
A= 0 z—\ 1 ;
0 0 z— A

here's how to do it:

$$A=\left (\vcenter{
\halign{$\ctr{#}$\quad
e$\ctr{#)$\quad
e$\ctr{#}$\cr
x-\lambda®i®0\cr
0®x-\lambda®i\cr
0@0ex-\lambda\cr}}\right)$$

Fine points of mathemalics typing 89

Explanation: We already know about “\left (" and “\right)", which make
the big parentheses that go around the matrix. The \vcenter control sequence
forms a box in restricted vertical mode, and centers that box vertically so that
the middle of the box is the same height as a minus sign. The \halign con-
trol sequence is one of the things you can do in restricted vertical mode; it is a
general operator for producing aligned tables. After “\halign{" and up to the
first “\cr" is a mysterious ritual for specifying three columns of a matrix. (We
will learn the rules of this later, let's take it on faith just now.) Then comes
a spccification of the three matrix rows, with tab marks “@" between columns,
and with pseudo-carriage-returns “\cr” at the end of each row. (Here @ is one
of the special characters mentioned in Chapter 8, it is not the (tab) key on
your keyboard; similarly, \cr is a control sequence, it is not {carriage-return).
Furthermore \cr need not come at the end of a line; you can type several rows
of a matrix on a single line of your TEX input manuscript.) After the final \cr
comes the “}" to cnd “\halign{"; then comes the “}" to end “\vcenter{".
Finally the “\right)" finishes ofl the formula.

If there were five columns instead of three, the \halign speccification would
be about the same, only longer; namely,

\halign{$\ctr{#}$\quad
e$\ctr{#>$\quad
e$\ctr{#}$\quad
e$\ctr{#Xr$\quad
e$\ctr{#}$\cr

followed by the individual rows. Here \ctr means that the corresponding column

is to be centered; if you change it to \1ft or \rt, the entrics in the corresponding

column will be set flush left or flush right, if they have different widths. When
all matrix entries are numbers, it is usually better to use \rt than \ctr.

The \quads in the \halign ritual are used to specify the space between
columns. If you want twice as much space you can replace \quad by \qquad.

@ Another way to specify the matrix equation in the above example is to use the
\cpile control sequence of Appendix B for each column:

$$A=\left (\cpile{x-\lambda\cr O\cr O\cr}\quad
\cpile{i\cr x-\lambda\cr O\cr}\quad
\cpile{O\cr i\cr x~\lambda\cr}\right)$$

90 Chapter 18

However, this use of \cpile is not recommended, because it doesn't work in general:
Each column is being typeset independently as a separate \cpile, so the rows won't
line up properly if some matrix entries are taller than others. It's best to use \halign
as suggested above—those funny-looking column format specifications are scary only
the first few times you encounter them; afterwards they are quite simple to use. On the
other hand \cpile (and its cousins \lpile and \rpile, which produce left-justified
and right-justified columns of formulas just as \cpile produces centered columns) can
be handy in simple cases.

How about matrices involving \1dots? The following example should help you
answer this question. Suppose you want to specify the matrix

aiy a12 ... Gin
21 G292 ... Q2q

\&ml Gm32 ... Gmn
One way to do it, using the “\vdots" control sequence of Appendix B, is

$$\left(\vcenter{\halign{$\ctr{#}\;$\!
O$\ctr{#>\;$0%\ctr{#)\; e\ctr{#¥$\cr
ai{11)®ai{12)8\1dots@ai{in}\cr
ai{21)r®ai{22}8\1dots®ali{2n}\cr
\vdots®\vdots® ®\vdots\cr
ai{mi)r®al{m2)@\ldots®ai{mn}\cr}}\right) $$

Long ago in this chapter you were promised a solution to the problem of typing a
displaycd equation such as

o = {® itz>0;
-z, il z <0,

Here it is, using \vcenter and \halign; sce if you can understand it now:

$$\lefty x \rightv = \left\{\vcenter{
\halign{\1ft{$#$,}\qquad
@if \11t{3>\cr
x®x20;\cr —-x®x<0.\cr})\right.$$

Note that the commas and ifs are generated by the \hal ign specification; this trick isn't
necessary, but it saves some typing. Another solution could be devised using \1pilae,
but (as in the discussion of matrices above) it is not recommended.

Displayed equations 91

»Exercise 18.3: Explain how to type

21 (Z sin xk(t)) (76) + 9()) at.

»Exercise 18.4: Also explam how to type
(mitnpt- - nm)l (n1+n2)(ﬂ1+nz+.Na);.'(ﬂ1+n2+"'+nm)_

1
@ »Exercise 18.5: How can you get TEX to typeset the column vector | :) ?
Uk
@ »Exercise 18.8: Using Appendix F to find the names of special characters, explain
how to type

PrLaj(z) = Tr[aFl‘—lx(LMb,.,(z)] ev#luated at. (") mod SL(n, C).

@ »Exercise 18.7: Decfine a control sequence \a for the “colon-cqual” operator in
computer science, 8o that a formula like “z := 2 X z 4 1" will be properly spaced

after it has been typed “$x\e2\timas x+i$".

<<19> Displayed equations

By now you know how to type mathematical formulas so that TEX will handle them

with supreme elegance; but there is one more aspect. of the art of mathematical

typing that we should discuss. Namely, displays. '
As mentioned earlier, you can type “$$(formula)$$” to display a formula in

flamboyant display style. Another thing you can do is type

4$$(formu1a)\eqno(formula)ss ;

this displays the first formula and also puts an equation number (the second
formula) at the right-hand margin. For example,

$$xT2-yT2 = (x+y) (x~-y) .\eqno(15)$$

will produce this:
g — = (z+)z —y). (15)

92 Chapter 19

Here's what $$ and \eqno do, in more detail: The formula to be displayed is made

into a box using display style (unless you override the style). If \eqno appears,
the formula following it is madc into a box using text style. When the combined width
of these two boxes, plus one texti size quad, excceds the current line width, squeezing
is attempted as follows: If the shrinkability of the formula to be displayed would allow
it to fit, the formula is repackaged into a box that has just enough width; otherwise
the formula is repackaged into a box having the current line width, and the equation
number (if any) will be placed on a new line just below the formula box. The formula
to be displayed is centered on the line, where this centering is independent of the width
of the equation number, unless this would leave less space between the formula and the
equation number than the width of the equation number itself; in the latter case, the
formula is placed flush left on the line. Now TjiX looks at the length of the previous
line of the current paragraph: if this is short compared to the size of the displayed
equation, vertical glue that the designer has specified by “\dispaskip(glue)” will be
placed above the formula, and vertical glue specified by “\dtspbskip{glue)” will be
placed below. Otherwise vertical glue specified by “\dispekip{gluc)’ will be placed
both above and below. (The glue below is, however, omitted if an equation number
has to be dropped down to a separate line; this separate line takes the place of the glue
that ordinarily would have appearcd.)

Another thing you can type for-displays, when you know what you're doing, is

“$$\halign(spec){(alignment)>$$". Thisis just likc an ordinary \halign, except
that the $$'s interrupt a paragraph and insert \dispskip glue above and below the
aligned result. Note that \eqno cannot be used in this case, and no automatic centering
is done. Page breaks might occur in the midst of such displays.

OK, the use of displayed formulas is very nice, but when you try typing a lot
of manuscripts you will run into some displays that don't fit the simple pattern
of a single formula with or without an equation number. Appendix B defines
special control sequences that will cover most of the remaining cases:

1. Two or more equations that should be aligned on = signs. (The alignment
can also be on other signs like <, etc.) For this case, type

$$\eqalign{(left-hand sidel)s(right-hand side;)\cr
- (left-hand sidep)@(right-hand sides)\cr

(left-hand side,)®(right-hand side,)\cr}$$

with an optional \eqno(formula) just before the closing “$$” and after the closing
“\Ner}". N.B.: Don't forget to type the final \cr! The relation symbols on which

Displayed equations 93

you are aligning should be the first symbols of the right-hand sides (not the last
symbols of the lcft-hand sidcs). If \eqno appears, the equation number will be
centered vertically in the display (or—if it doesn't fit—it will be dropped down
to the line following the display, as mentioned earlicr). For example, if you type

$$\eqalign{ali+bliw+ciiwT20=\alpha+\beta;\cr
bi2x+cd2xT20= 0.\cr}\eqno(30)$$

the result will be
a1+b1w+c1w2ma+ﬂ; (30)
byz -+ 6322 = 0.
Note that the left-hand sides are right-justified and the right-hand sides are left-
justified, so the = signs line up; the whole formula is also centered, and the
equation number (30) is halfway between the lines.

Sometimes you may want more or less vertical space between the aligned equations.

Type “\noal ign{\vskip{glue)}" after any \cr, to insert a given amount of extra
glue after any particular equation line. (You can even do this before the first equation
and after the last one.) '

In general, the result of \eqalign is a \vcentared box, 80 \eqalign can be used

in a fashion analogous to \1pile or \cpile. Thus, it is possible to type such
things as “$$\eqalign{...> \qquad \eqalign{...}$$", obtaining a display with
two columns of aligned formulas.

2. Two or more equations that should be aligned, some of which have equation
numbcrs. For this case you usc \eqalignno, which is something like \eqalign,
but each line now has the form

(left-hand side)®(right-hand side)®{equation number)\cr .

For example,

$$\eqalignno{ali+biiw+ciiwT28=\alpha+\beta;®(28) \cr
bi2x+ci2x720=0.0(30) \cr}s

Yields

a1+ bhw+quw=a+5; (29)
bz =+ cgz? = 0, (30)

94 Chapter 19

You can't use \eqno together with \eqalignno; the equation numbers now
must appear as shown.
If the {equation number) of some line is blank, you can omit the ® before it.

Example:
$$\eqalignno{f (x)@=(x~1) (x+1)\cr
O=x72-1.8(31)\cr}s$s

This will produce the following display:

fl@) = (z— 1)z +1)
=zl —1. (31)

(Note the position of the equation number.)

@ You can use \noal ign within \eqalignno toinsert new lines of text. For example,
“\noalign{\hjust{implies}}" will insert a line containing thc word “implies”
(at the left margin) between two aligned formulas.

3. A long equation that must be broken into two lines. You may want to type
this as ‘ '
$$\twoline{(first line)>{(glue)>{(second line)}$$

The formula's first line will be moved to the left so that it is one text size quad
from the left margin, and its second line will be moved to the right so that it
is one text size quad from the right margin. The specified glue will be inserted
between these two lines in addition to the normal glue.

Another way to break a long equation is to use \eqalign with appropriate
quads inserted at the beginning of the second line.

For example, here's an equation that is clearly too big to fit:

0(234 - 1, 235’ 1) = —3 + (234 — 1)/235 + 235/(234 — 1) + 7/235(234 - 1) _0(235, 234 —1, 1).

Let's break it just before the “ 7", One way to do this is to type

$$\twoline{\sigma(27{34}-1,27{35},1) =—3+(27{34}-1)/
27{35}>+21{35}/ (21{34}-1) »{2pt>{\null+7/27
{35> (21{34}-1)-\sigmna(21{35),27{34}-1,1) .}$$

Displayed equations 95

The two-line result will then be

)

o234 — 1,27, 1) = —3 4 (2% —1)/2% 4+ 2%/ (2% — 1)
+7/235(2% — 1) — 0(2%,2% — 1,1).

The other alternative is to type

$$\eqalign{\sigma (21{34}-1,27{35},1) @=-3+(27{342-1)/
21{35}+271{35)/(27{34}-1) \cr
e\qquad\null+7/27{35} (27{34)-1)
-\sigma(27{35},21{34>-1,1) .\cr}3$s

which yields

0(234 -1, 235’ 1) '= —34 (234 — 1)/235 + 235/(234 — 1)
+ 7/23%(23 — 1) — 0(2%, 23 — 1, 1).

A couple of things should be explained and emphasized about this example:
(a) The second line starts with “\null+7" instead of just “+7". The control
sequence \null is defined in Appendix B to mean a box of size zero, containing
nothing, and this may seem rather insignificant; but it makes a big difference to
TEX, because a plus sign in the middle of & formula is followed by a space, but
a plus sign that begins a formula is not. Thus, you should always remember to
type “\null” when you are continuing & multi-line formula. (b) When you use
\twoline, never hit {carriage-return) on your keyboard just after the } that fol-
lows the (first line), or just after the } that follows the (glue); this (carriage-return) -
makes TEX think a space was intended, and \twoline won't work correctly.
(You'll probably get some inscrutable error message like “\halign in display
math mode must be followed by $$.")

Breaking of long displayed formulas into several lines is an art; TEX never
attempts to do it, because no set of rules is really adequate. The author of a
. Mathematical manuscript should really decide how all such formulas should break,
since the break position depends on subtle factors of mathematical exposition.
Furthermore, different publishers tend to have different styles for line breaks.
But several rules of thumb can be stated, since they seem to refiect the best
mathematical practice: ’ '

96 Chapter 19

a) Although formulas within & paragraph always break after binary operations
and relations, displayed formulas always break before binary operations and
relations. Thus, we didn't end the first line of the above example with
“(2T{34}~1)+\null", we ended it with “(27{34}~1)" and began the
second line with “\null+7",

b) The \twoline form is generally preferable for equations with a long left-
hand side; then the break usually comes just before the = sign.

¢) When an equation is broken before a binary operation, the second line should
start at least two quads to the right of where the inncrmost subformula
containing that binary opcration begins on the first line. For example, if you
wish to break

$$\sumi{i<k<nI\left ((formula;)+({formulas}\right) $$

at the plus sign between (formula;) and (formulag), it is almost mandatory
to have the plus sign on the second line appear somewhat to the right of the
large left parenthesis corresponding to “\left (". [Note further that your
uses of \left and \right must balance in both parts of the broken formula.
You could type, for instance,

\eqalign{\sumi{1<k<n}®\left ({formula;)\right.\cr
®\qquad\left.\null+(formulag)\right) $$

provided that (formula;} and (formulay) are both of the same height and
depth so that the \left (on the first line will turn out to be the same size
as the \right) on the second. But in such cases it's simpler and safer to
use, e.g., \bigglp and \biggrp instead of \left(and \right).]

<20> Definitions (also called macros)

You can often save time typing math formulas by defining control sequences as
abbreviations for constructions that occur frequently in a particular manuscript.
For example, if some manuscript frequently refers to the vector “(zy,...,z,)",
You can type

\def\xvec{{(x+i,\ldotss,xin)}

Definitions (also called macros) | 97

and \xvec will henceforth be an abbreviation for “(x41,\ldotss,xin)”.
Formulas like '

Z (f(xh"')'xn)+g($15"'n3n))
(’l;---o’n)?&(oo'"oo)

can then be typed simply as
$$\sumi{\xvec#(0,\ldotss,0)}\biglp f\xvec+g\xvec\bigrp$$

TEX's definition facility is what a designer uses to define all the standard formats,

so Appendices B and E contain many illustrations of the use of \def. For example,
\eqalign and \eqalignno are both defined in Appendix B. Defined control sequences
can be followed by arguments, so we shall study the general rules for such definitions
in this chapter. It's a good idea for you to look at Appendix B now.

The general form is “\def{controlseq){parameter text){(result text)}”, followed

by an optional space, where the (paramcter text) contains no { or ¥, and where all
occurrences of { and } in the {result text) are properly nested in groups. Furthermore
the # symbol (or whatever symbol is being used to stand for parameters, cf. Chapter
7) has a special significance: In the (parameter text), the first appecarance of # must be
followed by 1, the next by 2, and s0 on; up to nine #'s are allowcd. In the {result text)
each ¢ must be followed by a digit that appeared after # in the (parameter text), or else
the # should be followed by another . The latter case stands for insertion of a single
in the rcsult of any use of the definition; the former case stands for insertion of the
corresponding argument.

For example, let's consider a “random” definition that doesn't do anything useful
except that it does exhibit TEX's rules. The definition

\def\cs AB#13#2CD\$E#3 {#3{ab#i)#1 c\x $#i2)
says that the control sequence \cs is to have a parameter text consisting of ten tokens
A, B, #1, #2, C D, \$ E 3, L,
and a result text consisting of twelve tokens
#3, {, a, b, #1, X #, U ¢ \x, # 2

Henceforth when TEX reads the control sequence \cs it expects that the next two input
tokens will be A and B (otherwisc you will get the error message “Use of \cs doesn’t
match its definition”); then comes argument #1, then argument #2, then C, then
D, then \$, then E, then argument ¢3, and finally a space. (It is customary to use the
word “argumecnt” to mean the string of tokens that gets substituted for a parameter;
parameters appear in a definition, and arguments appear when that definition is used.)

Chapter 20

How docs TEX determine where an argument stops, you ask. Answer: If a parameter

is followed in the definition by another token, the corresponding argument is the
shortest (possibly empty) sequence of tokens with properly nested {. . .} groups that is
followed in the input by this particular token. Otherwise the corresponding argument is
the shortest nonempty sequence of tokens with properly nested {. . .} groups; namely,
it is the next token, unless the token is {, when the argument is an entire group. In
any case, if the argument found in this way has the form “{(balanced tokens)}", where
(balanced tokens) stands for a sequence of tokens that is properly nested with respect
to { and }, the outermost { and } enclosing this argument are removed. For example,
let's continue with \cs as dcfined above, and suppose that the subsequent input contains

\cs AE{\Look}ABCD\$ E{And }{look} F.

Argument #1 will be the token \Look, since #1 is immediately followed by #2 in the
definition, and since {\Look} is the shortest acceptable sequence of tokens following
“Nce AB”. Argument #2 will be the two tokens “AB”, since it is to be followed by “c”.
Argument 3 will be the twelve tokens “{And }{look}”, since it is to be followed by
a space. Note that the exterior { and » are not removed from §3 as they were from
#1, since that would leave an unnested string “And }{1ook”. Note also that the space
following “\$" is ignored since it isn’t really a space (it follows a control sequence). The
net effect then, after substituting arguments for parameters in the result text, will be
that T}iX's input will essentially become

{And }{look}{ab\Look}\LookLic\x$ABF,

The space LI here will be digested, even though it follows the control sequence \Look,
because it was part of the defined result text. The “F.” here comes from the yet-
unscanned input.

Definitions are not “expanded” (i.e., replaced by the result text) when they occur

in a \def or an argument. Thus \Look and \$ and \x are trcated as single tokens
in the example above, even though \Look has presumably been defined elsewhere. If ®
or \cr occurs without being enclosed in {. ..}, in a dcfinition or an argument in the
midst of an alignment, T[2X assumes that this @ or \cr belongs to the alignment and
not to the definition or argument.

If you have difliculty understanding why some \def doesn't work as you expected,
try running your program with \trace “355 (sce Chapter 27).

. The cffect of \def lasts only until the control sequence is redefined or until the

‘end of the group containing that \def. But there is another control sequence
\gdef that makes a “global” definition, i.e., it defines a control sequence valid in all
groups unless redefined. The \gdef instruction is especially uscful in connection within
\output routines, as explained in Chapter 23.

Making boxes 9%

@ »Exercige 20.1: The example definition of \¢s includes a ¢3¢ in its result text, but
the way ## is actually used in that example is rather pointless. Give an example
of a definition where ## serves a uscful purpose.

<<21> Making boxes

In Chapters 11 and 12 we discussed the idca of boxes and glue; now it is time to
study the various facilities TEX has for making various kinds of boxes. In most
cases, you can get by with boxes that TEX manufactures automatically with its
paragraph builder, page builder, and math formula processor; but if you want to
do nonstandard things, you have the option of making boxes by yourself.

To make a rule box, type “\hrule” in vertical mode or “\vrule” in horizontal

mode, followed if desired by any or all of the specifications “width{dimen)”,
“height{dimen)”, “depth(dimen)”’, in any order. For example, you can type “\vrule
height 4pt width 3pt depth 2pt” in the middle of a paragraph, and you will get
the black box “g". The dimensions you specify should not be negative. If you leave any
dimensions unspecified, you get the following by default:

\hrule \vrule
width " 0.4 pt
height 0.4 pt "
depth 0.0 pt -

(Here “»” means that the rule will extend to the boundary of the smallcst enclosing box.)

To make a box from a horizontal list of boxes, type “\hjust{{hlist)}", where (hlist)
specifics the list of boxesin restricted horizontal mode. For example, “\hjust{This
is not a box}" makes the box

Thisisnok a bow

(in spite of what it says). The boundary lines in this illustration aren’t typeset, of
course; they merely indicate the box's actual extent. The “just” in \hjust comes from
the word “justification” —a printer's term, which is perhaps not completely justified in
this context, but TEX uses it anyway.

100 Chapter 21

Similarly, the instruction “\vjust{({vlist)}” makes a box from a vertical list of
boxes. If you type

\vjust{\hjust{TI\hjust{h}\hjust{i}\hjust{s}
\hjust{ >\hjust{bI\hjust{o>\hjust{x}}

you will get this box:

Automatic baseline adjustment is donc on vertical lists, as explaincd in Chapter 15.
The following example shows what happens if the baseline adjustment is varied:

\vjust{\def\\#1{\hjust{#1}}
\baselineskip-ipt
\lineskip 3pt
AR AR VARPANY
AASOANANTANYS:

Note that a specially defined control sequence \\ saves a lot of typing in this example.

»Exercise 21.1: When the author of this manual first prepared the above example,
he wrote “\baselineskip Opt” instead of “\baselineskip-1pt”. Why didn't
this work?

@ »Exercise 21.2: How would you change the above example so that the letters are
centered with respect to each other, instead of being placed flush left?

The phrase “list of boxes” in the above discussion really means a list of boxes and

glue. But if \hjust and \vjust are used in the simple manner stated, the glue
does not stretch or shrink. When you want the glue to do its thing, type “\hjust
to (dimcen){(hlist)}" and you will get a box of the specified width; or type “\vjust
to (dimen){{vlist)}" and you will get a box of the specified height. (The depth of a
\vjusted box is always the depth of the last box in the vertical list, except that it is
zero, when glue follows the last box.) You may also type “\hjust to siza{(hlist)}”
or “\vjust to size{(vlist)}"; this means that the (dimen) is to be the most recently
specified \hsize or \vseize, respectively. Finally, there's a further option of typing
“Nhjust expand (dimen){(hlist)}" or “\vjust expand (dimen){(vlist)}"; these ex-
pand the box to its natural width or height plus the nonnegative amount specified.

Making boxes 101

You can also get the effect of paragraphing and line-breaking with \hsize, in the

following way: If you give the instruction “\hjust to (dimen)”, and if at any
time while processing the corresponding (hlist) the total natural width so far minus the
total glue shrinkage so far exceeds the desired final width, Ti?X will use its paragraph
line-breaking routine to convert the horizontal list into one or more lines of the specified
width. In this case the \hjust will actually result in a box formed from a vertical list
of horizontal lists of the desired width.

For example, the box you are now
reading was made by typing “\hjust
to i5ipt{For example, the box

five lines.)” and TEX broke
it into five lines.

@ »Exercise 21.3: Look at the dcfinition of \spose in Appendix B and explain why
the glue “\hskip Opt minus 100pt” appears there. (This control sequence is

for superposition; e.g., “\spose xy" supcrposes x on y. Examples of its use are given
in Chapter 9 and Chapter 16.)

You can save a constructed box for later use by typing “\save(digit}{box), where
(digit) is 0 or 1 or - - - or 8 and (box) specifies a box. For example, “\save3\hjust
{The formula ““$x+y$-".}" will save away the box

The formula "z 44" |

(Note that math formulas are allowed in (hlist)s; but displays are not.) Later you can
use this saved box by typing “\box(digit)". The \save and \box instructions are useful
for constructing rather complex layouts like those in a newspaper page. Caution: You
can use a saved box only once; after you type “\box3" the contents of box 3 becomes
null, If you type “\save3\box2" the effect is to move box 2 to box 3 and then to make
box 2 empty.

@ »Exercise 21.4: Define a control sequence \boxit so that “\boxi t{{box)}"
yiclds the given box surrounded by 3 points of space and ruled lines on
all four sides. For example, this exercise has been typcset by telling
TX to \boxit{\boxit{\box4}}, where box 4 was created by typing
‘\saved4\hjust to 300pt{\exno 21.4: Define ...}".

102 Chapter 21

To raise or lower a constructed box in a horizontal list, or in a math formula,
precede it by “\raise(dimen)” or “\lower(dimen)”. For example, the \TEX con-
trol sequence that prints the TEX logo in this manual is defined by

\def\TEX{\hjust{\:aT\hskip-2pt\loweri .84pt\hjust{E}\hskip-2pt X}}

Similarly, you can move a constructed box left or right in a vertical list if you type
“\moveleft{dimen)" or “\movaright{dimen)” just before its description. The control
sequences \vcenter and \vtop are also useful for box positioning (see Chapter 26).

There is also a way to repeat a box as many times as necessary to fill up some

given space; this is what printers call “leaders.” The gencral construction is
“\leaders(box or rulc){gluc)’, where (box or rule) is any box or rule specified by
\hjust or \vjust or \box or \page or \hrule or \vrule, and whcre (glue) is specified
by \hekip or \hfill in horizontal mode, \vskip or \vfill in vertical mode. TEX
treats the glue in the normal way, possibly stretching it or shrinking it; but then instead
of leaving the resulting space blank, TEX places the contents of the box there, as many
times as it will fit, subject to the condition that the reference point of each box will
be congruent to some fixed number, modulo the box's width (in horizontal leaders) or
modulo the box's height plus depth (in vertical leaders). This “congruence” means that
leaders in difTerent places will line up with each other. For example,

\daef\lead{\leaders\hjust to 10pt{\hfill.\hfill)\hfill)}
\hjust to size{Alpha\lead Omaga)
\hjuet to sisze{The Beginning\lead The Ending}

will produce the following two lines:

Alpha Omega
The Beginning TheEnding

(Herc “\hjust to 10pt{\hfill.\hfill)}" specifies a box 10 points wide, with a
period in its center; the control sequence \1ead then causes this box to be replicated when
filling another box.) When a rule is uscd as a leader, it completely fills the glue space;
for example, if we had made the definition “\def\lead{\leaders\hrule\hfil1}",
the two lines would have come out looking this way instead:

Alpha Omega

The Beginning The Ending

Making bozes 103

Leaders can be used in an intercsting way to construct variable-width braces in the

horizontal direction. TEX's math extension font cmathx (used with basic format)
contains four characters that allow you to typesct such braces in the following way.
First make the definitions

\def\bracex{\leaders\hrule haeight 1.5pt \hfill}
\def\dnbrace{$\char-772¢\bracex$\char-775
\char 774\bracex\char-773%>
\def\upbrace{$\char-774$\bracex$\char-773
\char-772¢\bracex\char-775%)>

Then \hjust to 100pt{\dnbrace}

\hjust to 200pt{\upbrace}
will produce

A
” “

- >
o

This is occasionally useful in connection with math formulas.

@ »pExercise 21.5: How do you think the author of this manual made asterisks fill the
rest of the current page? [Hint: The asterisk used (in font cmrl0) has a height of
1.5 points.)

LA R E I EEEEEEEEEEEEE S ERE XXX
LR K B B X N K N X N X N X R NN N RN X XXX

My

£< Alphabetical References »>
<< This packa}e will produce an alphabetical list of LREFERs »>2

.page frame 60 high 77 wide
.area text line 4 to 59
.place text

. PREFACE 1
.indent O;
.single space
.nofill
.verbatim

" MACRO lrefer (name, argument, rprint, rcomment) $(

.send vefx %(break; group}\name\argument$rpvintﬁrcomment${apart)$
2 ‘

.require "{aihpubZbiblio. test" source!file;
.portion refx

. SINGLE SPACE
TURN ON “{"

.AT "\" name "\"“ arg "%" rp "$" com "$" $(
. LREFER (name.
.jargly

Jivpts com) O)%
[

 REEEIVE "\\"

AITHANDRGOK BIBLIOGRAPHY 2>
MATURAL LANGUAGE SECTION 25

.LREFER (palya®?, iPolya. #G. #¥%
soHow to Solve It» (2nd ed.). New York:# Doubleday Anchor, 1957. 1,
. tPolya, 19971,

CLREFER (minsky&F. iMinsky. #M. ##
.Steps toward artificial intelligence. In E. #A. Feigenbaum % J #Feldman #
. {(Eds.), <<Computers and Thoughtl. New York:# McGraw-Hill, 19&3. Pp. #404—-450.

.LREFER (FEIG&3, {Feigenbaum, E.#A. ,. % Feldman, J (Eds.) ##
T Computers and Thoughtl New York: # McGraw-Hill, 1963. 1,
. {Feigenbaum % Feldman, 194&31,)

CLREFER (Har73, iHarvris., L. R, ##
The bandwidth heuristic search. <<IJCAI 3>, 1973, 23-L9. 1.
. tHarris, 19731

CLREFER (Hat74, !Harris, L. R. ##

The heuristic search under conditions of errvor. ##
<CoArtificial Intelligencer, 1974, <4B>, 217-234. 1,
. tHarris, 19741,

.LREFER (Pohl70a., iPohl, I # :2:##

_First results on the effect of error in beuristic search.
B. Meltzer % I Michie (Eds J, +«<Machine Intelligence 353.
. New York: American Elsevier, 1970, Pp. 219-236. (aj)i,

. iPohl, 1970ai.)

JLREFER (Pohl70b, iPohl, 1. # < 30#H
 Heuristic search viewed as path finding in a graph. ##
CCeATrtificial Intelligencel, 1970, <013, 1923-204. (hit,

.LLREFER (Pohl73, iPohl, I.# < 5:##

" The avoidance of (relative) catastrophe, heuristic competence,

.genuine dynamic weighting and computational issues in heuristic problem ##
.se0lving. CCIMCAT 3>, 1973 12-17. 1.

. tPohl, 1973t

.LREFER {(Mose&7, |Moses., J. #
. C<8ymboliic Integration>, MAC-TR-47, MAC Project, MIT: 1967. 1,
. iMoses: 194671

.LREFER (Slagél, iSlagle, #J. #R. <. 1> ##

_ <A Heuristic Program that Solves Symbolic Integration Problems in #
_Freshman Calculus:# Symbolic Automatic Integrator (SAINT)>, 5G-0001, #
.lincoln l.aboratory, MIT, 1961. 1.

.i8lagle:, 19&11.)

. LREFER (S1lagé3, iSlagle. #J #R. < 20##

_A heuristic program that seolves symbolic integration problems in #

. freshman calculus. in E. #A. Feigenbaum % .J. Feldman (Eds.), <<Computers #
.and Thoughtl, New York:# McGraw-Hill, 1963, Pp. 191-203. (Also in #

L ACJACME, 1RE2. D010, 2075200) 1,

. 18lagle, 194631.)

. LREFER (naewe7&,

iNewell. #4460, % Simon. #H #4, “+Computer science as empirvical inquiry: #
.Symbols and mearchl The 1974 ACM Turing Lecture. OCACMI, 1976, <4192, 113-13
D iMewell &% Simon., 197610

1871 break; group*\FEIG&3\Feigenbaum, E.#A.,, % Feldman, J. (Eds.) ##ICComput
2271 breaX; groupr\Har73\Harris, L. R. ##The bandwidth heuristic search. <{IJCAI
27/1 break:; graeaupX\Har74\Harris, L. R. ##The heuristic search under conditions o
1371 break; gr®upriminskys3\Minsky. #M. #H#Steps toward artificial intelligence.
4971 break; groupr\lMose&7\Moses, J. #J{{Symbolic Integration>, MAC-TR-47, MAC Pro
2371 brealk; qroup¥\newe76\Newell., #A. T: &3, & Simon. #H. #A, C+Computer sclience as
3371 break: groupr \ohl70a Pohl, IETR#FITSEt results on the effect of error

I.%
3871 break; groupX\Pohl70b\Pohl, I.# < 3:#&Heuristic search viewed as path findil
4371 break; groupX\Pohl73\Fohl, I.# < 37#%The avoldance of (relative} catastroph
871 break; group}\polyad7i\Polya, ¥G. ##¥<IHow to Solve It>r (2nd ed.). New York: % D
um/1 break; groupri\Slagéli\Slagle, #J. #R, C: 1> ##{CA Heuristic Program that Solves
6271 breaki groupX\Slags3\Slagle, #J. #R. O 20##A heuristic program that solves sym

1970 END “COMPWTED!TEXT"a%${apart
1970 END "COMPUTED!TEXT"bhs€{apart
19&3 END “"COMPUTED!TEXT"44¥{apart

break:
break;
break:
break;
break;
break;
‘breaki
break;
breaki
break:
break;
break;

groupWEIGEI\Feigenbaum, E. #A.,, % Feldman, J. (Eds.) ##{{Computers

groupt\Har73\Harris, L. R. $##The bandwidth heuristic search. <{{IJCAI

groupX\Har74\Harris, L. R. ##The heuristic search under conditions of
groupd\minsky&3\Minsky, #M. ##Steps toward artificial intelligence. I
groupi\lficseb7 \Moses, J. #IU8ymbolic Integrationl, MAC-TR-47, MAC Proj
groupX\newe7&\Newell, #4, <. 62>, % Simon, #H. #4. <+Computer science as

groupI\Pohl7Ga\Pohl, I.# {: 20##First resulfts on the effect of error i
aroupX\Poh170b\Pohl, I.# <:3-##Heuristic search viewed as path findin
groupX\Pohl73\Pohl, I # <:52##The avoidance of (relative) catastrophe
graupX\polyad7\Polya, #&. & {How to Solve It> (2nd ed.). New York:# D
groupX \Slagé&inGlagle, #J #R. O 12 ##7CA Heuristic Program that Solves S

groupY\Slagé3\Slagle, #J. #R. : 2:##wA heuristic program that solves symb

Avren Barr

1 Mar 1923 8:54 ERRATA.TEX{ TEX,DEK] PAGE 2~1

This is a 1ist of all errors in the September 1978 TEX user manual that
were known on November 4, 1978. It also includes a few things that were
omitted in September. A1l these changes (and only these) have been
incorporated into the November 1978 manual.

Title page, change date to "November 1978 (second printing)" and change "draft" to
"drafts" in the first 1ine of the footnote,. ‘

Page 26, line 4, delete "of the second paragraph®.

Page 29, line 13, change "later.)" to "later. A 1ist of control sequences for
special symbols appears in Appendix F.)

Page 48, line 15
(one centimeter equals 26.688 Didot points)

Page 32, line 18, change "11" to "12".
Page 59, line 4, insert a ")" after this line.

‘Paga 61, 1ine 28, insert a "$" before the pound sterling sign
Page 61, line 38, change ", and" to ", ‘‘$\$$'’', and"

Page 82, line 13, append this to the paragraph: "Another case is a formula
1ike n/log n, where a negative thin space has been inserted after the /.)".

Page 182, line 6, append this to the paragraph: "The control sequences
\vcenter and \vtop are also useful for box positioning (see Chapter 26)."

Page 186, line 17, change "instead of ‘‘$\ctr{#}$'’" to "instead of ‘‘\ctr{$#$}'’".

Page 186, last three lines, change "processed; ydu might ... appropriate \def." to
"processed.".

Page 135, change the first 7 lines to the following:

based only on the current style, regardless of the sizes of numerator and
denominator.

/ \vcenter \
[14 Y<vlist>) Append a centered or top-adjusted box.

\ \vtop /
The specified vertical Vist is constructed in restricted vertical mode, then
it 1s \vjusted and the resulting box is moved up or down so that {\vcenter) it is
centered vertically just as large delimiters are, or {\vtop) the baseline of the
topmost box in the vertical 1ist coincides with the baseline of the formula.
Then TEX resumes its activities in math mode.

Page 158, 1ine 16, change ". (We" to ".\xskip (We".

Page 158, new paragraph inserted before the 4th-last line on this page:
® Within a paragraph, type ‘‘\xskip’'’' before and after parenthesized sentences.
(For exampile, there is an \xskip in the paragraph you are now reading, and in
algstep E1 above.)

(The convention just explained has also been introduced into the entire TEX manual.)

Page 159, replace last two paragraphs by one paragraph, to wit:
If the exercise contains a ‘‘hint'’ within a paragraph, you type
ss\xskip[{\s1 Hint:) '’; as usual, there should be no space before \xskip.

1 Mar 1929 8:54 ERRATA.TEX[TEX,DEK] PAGE 2-2

Page 162, line 4, change "Addison-Wesley's" to "the publisher’s".
Page 165, line 15, change *4,5" to "4.625".

Page 165, line 23, change "4" to "4.25".

Page 182, 1ine 6, change "or XYZages" to "XYZages, or XYZest"

Page 182, lines 14 and 15, change "-xe, or -xye, where x and y" to
"-Xe, or -XYe, where X and Y"

Page 182, line 18, new sentence appended to this paragraph:
"Similarly, final syllables of the form -Xed or -XYed (except -ized)
are also disregarded."

Page 185, line 22, delete "guess-work"

Page 186, line 7, change "prob-a-bil-ity" to "prob-abil-ity".

Page 187, index entry for Bibliographic..., change "14" to "“15",

Page 189, index entry for \deg, add page 164.

Page 195, delete 15th line in left-hand column.

Page 195, index entry for \spose, add page 39.

Page 196, index entry for \vcenter, add page 102.

Page 196, new index entry:
\vtop (make <viist> box using top baseline), 182, 135.

Page 196, index entry for \xskip, change "159" to "158--160",

Page 196, index entries for \yskip and \yyskip, change "158--159" and "158"
to "159", ,

Page 197, index entry for \$, add page 61.
Page 198, the TEX logo is too smali, each time 1t appears on this page.

1 Mar 1979 8:54 ERRATA.TEX[TEX, DEK] PAGE 3-1

Extehsions to TEX made since the November printing of the manual:

1. Several new <dimenparam>s have joined \hsize, \vsize, \topbaseline, etc.,
namely \lineskiplimit, \mathsurround, and \varunit.

By typing "\lineskiplimit <dimen>" you specify a dimension p such that
\1ineskip glue is used as the interline glue if and only if x-h-d < p, in
the notation of Chapter 15.

By typing "\mathsurround <dimen>" you specify an amount

of blank space to be inserted at the left and right of any formula
embedded in text (i.e., formulas delimited by $ and §).

By typing "\varunit <dimen>" you specify the current value of a
variable-size unit; the code "vu" denotes such relative units in a <dimen>
specification. For example, after you define "\varunit 2pt", a <(dimen>

of "7vu" would stand for 14 points. When TEX begins, the values of
\l1ineskiplimit, \mathsurround, and \varunit are @pt,

gpt, and lpt, respectively.

2. There is a new option to \advcount: If you type "\advcount <digit> by <{number>"
the specified counter is increased by the specified number. (When the "hy" option
is omitted, the counter is increased by plus-or-minus one as presently.)

For example, "\advcount 8 by - \count 1" subtracts counter 1 from counter 9.

3. The control sequence \unskip can be used in horizontal mode (or restricted
horizontal mode) to delete one glob of glue, if this glue was the last item

added to the horizontal 1ist. The main use of this is to remove an unwanted space
that may have just appeared. For example, in a macro expansion the string
"$1\unskip" denotes parameter #1 with a final blank space {(or other glue) removed,
if #1 ends with a blank space {or other glue).

4, Typing "\uppercase{<token 1ist>}" in horizontal mode will change all lower-case
letters of the token 1ist into upper case. (But not the letters of control
sequences.) Similarly, "\lowercase{<token 1ist>}" changes upper-case letters

into lower case. .

5. Typing "\xdef<{control sequence>{<result text>}" is iike

"\gdef<control sequence>{<result text>}" except that definitions in the result
text are expanded. For exampie, "\xdef\z{\z\y}" will append the current result
text of macro \y to the current resuit text of macro \z.

6. The new control seguence \ifpos is analogous to \ifeven; the

\else code is evaluated only if the specified counter is zero or negative.
For example, you can use \ifpos to test if a counter is zero in the
following way: .

\def\neg#l{\setcount#1l-\count#l}
\def\ifzero#l#2\else#3{\ifposfl{#3}\else{\neg#l
\ifpos#1{\neg#l #3}\else{\neg#l #2}}}

7. A new unit has been added: "em" equals one quad in the current font.

1 Mar 1979 8:54 ERRATA. TEX[TEX, DEK] PAGE 4-1

Corrections hoted since the November printing:
. Page 14, Vine 15, change TEXes to TEXs.

Page 145, a hew error message:

Warning: Long input line has been broken.

Your input file contained a very long sequence of characters between
carriage returns. TEX arbitrarily broke it after 158 characters.

Page 166, in the definition of \dimsectionbegin:
Change "\yyskip" to "\sectionskip”.

Page 186, change "com-put-a-#bil-ity® to "com-put-asbil-ity".

Page 195, Spacing in math formulas,
tables, 81, 83.

1 Mar 1979 8:54 ERRATA.TEX[TEX,DEK] PAGE 5-1
Important changes made to TEX on February 25, 1979:

The American Math Society will be printing copies of the TEX manual
with all the above bugs cleaned up, and on this occasion it was the
last chance to change TEX before changes became unwieldy. Thus, Knuth
decided to make a couple improvements, to wit:

1. The control sequences \hjust and \vjust are henceforth changed to \hbox and \vbox.
(This should cause you little or no trouble with MSs already typed, simply

insert "\def\hjust{\hbox}\def\vjust{\vbox}" at the beginning of your file.

The basic.tex file already has this, so if you are using basic format

no change is necessary.)

2. The old kludge about \hjust to ...{ } making a boxed paragraph if the
contents were too iarge has been replaced by a far better convention.

This change will make TEX balk on some manuscripts it previously handled
(e.g. it might now say "Overfull box, 1138.74 points too wide"), but

only a few changes will really be necessary in your files.

Here are the new rules (replacing the previous rule on page 181):

% You can also get the effect of paragraphing and line-breaking with

\hbox, in the following way: If you give the instruction "\hbox par<{dimend>",
TEX will use its paragraph 1ine-breaking routine to convert the horizontal list
into one or more lines of the specified width. In this case the \hbox will actually
result in a box formed from a {\sl vertical} 1ist of horizontal 1ists of
the desired width. The boxed paragraph that you get is not indented.

For example, the box you are now
reading was made by typing "\hbox
par 156pt{For example, the box
... tive 1lines.}" and TEX broke
it imto five lines.

» If you specify hanging indentation with such a boxed paragraph, it applies
to the box and not to the paragraph (if any) containing the box. For exampie,

\hbox par 288pt{\hangindent 18 pt (text >}

will put the specified text into a box 260 points wide, whére all lines after
the first are indented by 18 points at the left.

104 Chapter 22

<22> Alignment

A novice TEX user can prepare manuscripts that involve mathematical formulas
but no complicated tables; but a TX Master can prepare complicated tables
using \halign or \valign. In this chapter, if you're ready for it, you can learn
to be a TiX Master. (And the next chapter—which talks about the design of
\output routines—will enable you to become a Grandmaster.)

For simplicity, let's consider \halign first; \val1i gn is similar, and it is used much
more rarely. If you type

\halign to (dimen){(alignment preamblc)\cr{alignment cntries))

in vertical mode or restricted vertical mode, you append a list of aligned boxes that
are each (dimen) units wide to the current vertical list; these boxcs are formed from
the (alignment entries) by using the specifications in the (alignment preamble). We've
already scen examples of alignment in Chapter 18, where \ha1l ign was used to construct
matrices. In general, the preamble tells how to format individual vertical columns whose
entries are going to be assembled into horizontal rows of the specified width. Before
we get into any dctails of the alignment, let’s observe straightaway that “\halign
to (dimcn)” can be changed to “\halign to size” if the (dimen) is to be the cur-
rent \hsize; it can be shortened to simply “\halign” if the minimum size (without
shrinking) is desired, or replaced by “\halign expand {(dimen)” if the boxes should be
stretched to a given amount in addition to this minimum size. In other words, \halign
has the same four options as \hjust.

@ The (alignment preamble) consists of one or more (format) specifications separated
by ®’s. Each (format) specification is a scquence of tokens that is properly nested
with respect to {. . . } groups and contains exactly one “#”. For example, the (alignment
preamble) suggested for three-column matrices in Chapter 18 was

$\ctr{#}$\quade\ctr{#}$\quades\ctr{¢}$

A (format) is essentially a simple \def with one parameter; the idea is to replace the
by whatcver alignmcnt entry is typed in that column position. For example, if the
(alignment entries) following this preamble are

x+1@x12@x43\cr ylii®@yi20yi3\cr

then there will be two rows of the matrix obtained by substituting these entries in the
preamble, namely

$\ctr{xi1)$\quad $\ctr{xi2}>$\quad $\ctr{xi3)$
$\ctr{y+1}$\quad $\ctr{yi2}$\quad $\ctr{yi3}$

Alignment 105

The (alignment entries) consist of zero or more (row)s; and a (row) is one or more entries
scparated by @'s and followed by \er. In general if the preamble contains n (format)s

(u)#{v) @ (ua)#(va) ® o {Un)#{va)

and if there are m rows each containing n entries

{zn)) © (z3) © -+ ® (z1p) \cr
() ©® (z22) © -+ ® (2ma) \er
(-'h;u) ® (Z.;.n) ® 9 (z,;.“) \cr

we will obtain mn fleshed-out entrics

(uidzna)vr) (ua)(zia)(va) -+ (UaXZin){Vn)
(u)zn)v) (wlzaXv) - (UnXZ2n){vn)

N Em)or) (Uaem) - (un)Gmn}(vn)

by repeatedly copying the preamble format information.

Now here's what TEX docs with the mn fieshed-out entrics: The natural width

of each entry \hjust{{u;}zi;}{v;)} is determined; and the maximum natural
width is computed in each column. Say w; is the maximum natural width in the jth
column; then each fleshed-out entry in that column is replaced by the box “\hjust to
w;<{u;){z:;)}{v;)>". Thus, all entries in a particular column now have the same width.
Finally these boxes are welded together to make the m rows, by inserling n+-1 elements
of glue in each row (before the first box, between boxes, and after the last box). The
glue to usc in this welding process has previously becn specified by “\tabski p{glue)”.
The m row boxes are finally appended to the current vertical list.

If you don’t understand what was said so far, look back at the matrix example and

reread the above until you understand. Because there are also some refinements
that we shall now discuss. (a) After any \cr you can type “\noalign{({vlist)}", and
this (vlist) will simply appear in its place among the aligned row boxes. The (vlist)
in this case usually contains vertical glue, penalty specifications, or horizontal rules;
but it might contain anything that is allowed in restricted vertical mode, even another
\halign. (b)If some row has fewer than n entries, i.c., if the \cr of some row occurs
before there have been n— 1 @'s, all remaining columns of the row are set to null boxes

106 Chapter 22

regardless of their format. (This is not necessarily the same as “\h Just{{u)(v,)>";
the preamble formats are simply ignored.) (c) If you specify \tabskip{glue) in the
preamble, the n-}- 1 globs of glue that weld together the final row boxes will be different,
8o you can get different spacing between columns. Here's how it works: The glue placed
befors column 1 is the \tabskip gluc in cffect when the \halign control sequence
itself appears; the gluc that replaces a ® or \cr is the \tabskip glue in effect when
that @ or \cr appears in the preamble.

Warning: Any spaces you type in the (format)s of the preamble will be taken

L. seriously! Don't start a new line after a @ unless you intend a corresponding space

to be there in every column. (You may, of course, start a new line after \er without

inscrting an unwanted space, or you can type “®\!” and go to a new line.) The same

applies to spaces in the aligned entrics; always be extra careful with Yyour use of spaces
inside \halign.

Another warning: Don't use a construction like “$#$” in your (format)s if the

[. corrcsponding column entries might be null. Otherwise TX will scan “$$” and

think display math is intended, and this probably will lead to hopeless confusion. (The

matrix example above has “$\ctr{#}$" instcad of “\ctr{3}” for precisely this
rcason. Another safe possibility would be “\ctr{$# $}".)

You can have \halign or \valign within \halign or \val ign (for example,
. X matrices within aligned equations). In order to allow this, T insists that {

and } be balanced in alignment cntries, so that it is possible to distinguish which level
of alignment corresponds to a given ® or \cr. Consider, for example, the extremely
simple alignment

\halign{\ctr{¢}\cr

{cntry)\cr}
When TEX begins to scan the alignment entry, it scans the string of tokens “\etr{
{entry)\cr}..."; and the appearance of “\ctr" causes TiX to look for \ctr's argu-

ment. This argument begins with “{", so the scanning continues until the matching
“»". However, when the \cr is encountered after (entry), TEX is supposed to insert the
matching “}” from the preamble. If (entry) itself contains a use of \hal ign, there will
be \cr's in the middle of {entry); so TEX doesn't simply look for the first \cr. Instead
it ignores the tokens @ and \cr until finding one that is not enclosed in braces, thereby
correctly determining the argument to \ctr.

@@ Defined control sequences in the preamble are not usually expanded until the
alignment entries are being processed. However, a control scquence following
“\tabskip(glue)” in the preamble might be expanded, since a {glue) specification might
involve control sequences. For example, “\tabakip Opt \ctr{#}" will effectively be

Alignment 107

expanded by TEX to “\tabskip Opt \hfill ¥ \nfill” whilethe preamble is being
scanned, because TEX won't know (when it gets to “\ctr”) whether or not the expansion
of this control sequence will begin with “plus 1pt" or some other continuation of the
glue specification.

In the rest of this chapter we shall discuss two worked-out examples. First suppose
that we want to typeset three pairs of displayed formulas whose = signs are to be
aligned, such as

Vi=vi—aqv, Xi=z—gqz;, U=uw, forisj (13)
Vj = vy, X,‘ == z,‘, U,' = Uy -+ Zis“-i Qils.

We could do this with three \eqalign’s, but let's not, since our current goal is to learn
more about the general \halign construction. One solution is to type

$$\vcenter{\halign{(alignment preamble)\cr
ViiOvii—qiivij,@X4i@xdi-qdixdy, @UiiGull, \qquad\hjust{for }i#) ;\er
Vijovd),BXs 0xs], 0UsjOud j+\sumi{i#jIqdiuii . \errP\eqno(13)$$

with some suitable alignment preamble. (It sometimes helps to figure out how you want
to type the alignment entrics before you design the preamble; there's a tradeoff between
ease of typing the entrics and ease of constructing the preamble.) Onc suitable preambleis

$\rt{#>$e\11t{$\null=¢$>\qquad
e$\rt{#>$6\11t{$\null=¢$>\qquad
e$\rt{#r$e\1fe{$\null=¢$}

Note the \nulls hcre: they ensure proper spacing before the = signs, because the
equations are being broken into two parts. Study this example carcfully and you'll soon
see how to make uscful alignments. :

»Exercise 22.1: What would happen if “\vcenter” were replaced by “\vjust” in
the above cxample?

If we didn't have to include an’equation number like “(13)”, the \vcenter could

have been omitted; but then there would have been a possible page break between
the two equations, and the equations would not have becn centeréd on the line. (The
only effect of the $$’s in “$$\nalign{...}$$" is to insert \diepskip glue above
and bclow the alignment.) Onc way to prevent a page break would be to insert
“\noalign{\penalty 1000}" between thelincs. And one way to center the equations
would be to vary the tabskip glue, as in the definition of \eqalignno in Appendix B.
But it is much easier to use \vcenter.

o

108 Chapter 22

The second example is slightly more complex, but once you master it you will have
little or no trouble with other tables. Suppose you want to specify this:

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70

3 46-55 2.87

4 40-53 . 3.24

5 45-52 3.40

6 51-59 95¢

*(first quarter only)

including all those horizontal and vertical lines. The table is to be 150 points wide. Here
is one way to do it, letting the tabskip glue expand to give the column widths (so that,
for example, the “Price” column will turn out to be exactly one en-dash-width wider
than the “Year” column):

$$\vjust{\tabskip Opt

\def\I{\vrule height 9.25pt depth 3pt}

\def\ .{\hskip-10pt plus 10000000000pt}

\hrule

\hjust to 150pt{\|I\.AT&T Common Stock\.\[}

\hrule

\halign to 130pt{#\tabskip Opt plus 100pt
@\hfill#o#@\ctr{#}®§@\hfil1§0¢\tabskip Opt\cr
\I@\.Year\.\hfi118\|®\.Price\.8\|®\.Dividend\.\hft11@\|\cr
\necalign{\hrule}

\1®19718\ |©41—540\ |©$\$$2.600\ | \cr\noal ign{\hrule}
\ 1828\ |®41--54@\ |©2.708\ |\cr\noalign{\hrule}

\ |@3e\ |®46--558\ |®2.87@\ |\cr\noalign{\hrule)}

\ |©4@\ |©40--530\ |®3.24@\ |\cr\noalign{\hrule}

\ @58\ |®45--520@\ |®3.400\ |\cr\noalign{\hrule}

\ @68\ |@51--598\ |®.95\spose+e\ |\cr\noalign{\hrule}}
\vskip 3pt

\hjust{«(first quarter only)}}$$

Here is an explanation of this rather long sequence of commands: The control
sequence “\ |" is defined to be a vertical rule that guarantecs appropriate spacing of

Output routines 109

baselines between individual rows. (TEX doesn't use \baselineskip and \lineskip
before or after horizontal rules.) The alignment is defined in such a way that the
\tabekip glue is zero at the left and right of the alignment, but it is “Opt plus
100pt" between columns; this glue will therefore expand to make the columns equally
spaced. There are seven (not threc) columns, since the vertical rulcs are considered to
be columns. The preamble has just “§" for the columns that are to be vertical rules; the
“Year" column and “Dividend” column both have format “\hfi11#", causing them to
be right-justified, while the “Price” column has format “\etr{#}". The top row of the
table appcars before the \halign, since it does not have to be aligned with the other
rows. In the sccond row of the table, an cxtra “\hfi11" has becn typed after “Year”
and “Dividend”, to compensate for the fact that the columns are being right-justified
yet the titles are supposed to be centered. The special control sequence “\." is also
placed around these title words; this is somewhat tricky. It has the cffect of telling TIEX
to ignore the width of the title words when computing the column widths. The asterisk
in the final row of the table is preceded by “\sposa” in order to make it zero-width,
otherwise the decimal points wouldn't line up properly.

Another way to get vertical and horizontal rules into tables is to typeset without
them, then back up (using negative glue) and insert them.

The control sequence \valign is analogous to \hal ign, but with rows and columns

changing roles. In this case \cr marks the bottom of a column. The boxes in each
row will line up as if their reference points were at the bottom; in other words, their
depth is cffcctively set to zero by modifying their height.

<<23>> Output routines

We discussed TiX's page-building technique in Chapter 15. Constructed pages
will bc output dircctly, if the book design you arc using has not specified any
special \output routine. But usually a designer will have given special instruc-
tions that attach page numbers, hcadings, and so on. Even the basic format in
Appendix B has a simple \output routine, described at the end of Chapter 15.

Complex \output specifications use the most arcanc features of TEX, so it
usually takes a designer three or four trials before he or she gets them right.
Thus, you'll want to skip the rest of this chapter when you're first learning the
TEX language. But—Ilike alignments—\output routines soon lose their mystery
after you have some experience with them. '

110 Chapter 23

When you type “\output{{output list)>", the spccified output list is stored away

for later use, without expanding any of its defined control scquences. Then, when
TEX decides to output a page, the saved output list is effectively inscried into the input,
wherever Ti2X happens to be reading the input at the time. The purpose of the output
list is to construct a box from a vertical list, as if one had typed

\vjust{{output list)};

this box is what gets output. The output routine might, however, produce a null box,
if it saves away the current page in order to combine it with a later page.

This would be a good time for you to rcread Chapter 15 if you don't recall TEX's
L. mechanism for breaking pages. Since T}X looks ahcad for a good place to break—
it usually is well into page 109, say, before page 108 is output—some care is needed to
synchronize this asynchronous mechanism. For example, if you want to put the current
scction title at the top of each page, the section title might have changed by the time
that page is actually shipped off to the output routine, since TEX might be working on
a new scction before finding the most desirable break. An \output routine therefore
neceds some way of remembering past history. Such coordination is provided by so-
called marks, when you're in vertical mode, you can type “\mark{{inark text)}”. This
causecs the (mark text) to be invisibly attached to your current position in the vertical
list that is being broken into pages. If defined control sequences appear in a {mark text),
they are expanded at the time the mark appears, so that the \output routine will later
be able to make use of values that were current,.

The best way to think of this is probably to regard vertical mode as the mode

in which you generate an arbitrarily long vertical list of boxcs that somehow gets
divided up into pages. The long vertical list may contain marks, and whenever you are
outputling a page the \output routine will be able to make use of the most recent mark
preceding the break at the bottom of the page (\botmark) and the most recent mark
preceding the break at the top of the page (\topmark). For example, suppose your
manuscript includes four instances of \mark, and suppose that the pages get broken
in such a way that \mark{a} happens to fall on page 2, \mark{8} and \mark{y}.on
page 4, and \mark{é} on page 5. Then

On page \topmark is \botmark is

null null
null fo}
a

S UL b Q0 BN

a
a v
5)
§)

Oulput routines 111

The mark concept makes it possible to typeset things like dictionaries, where you want
to indicatc the current word-intcrval at the top of cach page, if appropriate marks are
inserted just before and after the space between entries.

@ TEX has threc control sequences that you are allowed to use only in \output
routincs: (i) \page, which rcpresents the box containing the current page being
output; (ii) \topmark, which represents the top mark for the current page (the cor-
responding (mark tcxt) is inserted into TiX's input at this point); (iii) \botmark, which
is analogous to \topmark. The \output routine should use \page cxactly once each
time a page is to be output, but it may use \topmark and \botmark as often as desired.

There are several other control sequences of special interest in connection with
output routines, even though they are allowed to appear almost anywhere in a TEX
manuscript: '

\setcount{digit){optional sign)(numbcr) Sets one of ten “counters” to the specified
number (possibly negative). For example, “\setcount2 53" scts counter number
2 equal to 53.

\count(digit) The current value of the spccified “counter” is inscrted into the input.
If this number is zero, the result is the single digit “0"; if positive, the result
is expressed as a decimal integer without leading zeros; if negative, the result is
expresscd as a roman numeral with lower case letters. (For example, —18 yields
“xviii”, =19 yiclds “xix".) As mentioned in Chapter 8, \count{digit) can also
be used when TEX is expecting a (number); for example, “\sotcountd4\count2”
sets counter number 4 equal to the current contents of counter number 2.

\advcount{digit}y The specificd “counter” is increased by 1 if it is zero or positive,
decreased by 1 if it is negative. (Thus, its magnitude increases by 1, but it retains
the same sign.)

\1 fevan(digit){({true text)}\olsa{(falsc text)} If the specified “counter” is even, the
{true text) is input and the {false text) is ignored; if odd, the (true text) is ignored
and the (false text) is input.

\1i£ {char;){chars){(true text)}\else{(false text)> If the input (char,) is equal to the
input (chary), the (true text) is input and the (false text} is ignored; if not, the
{true text) is ignored and the (false text) is input.

Typical uses of \1f have {char;) constant, while (char;) is specified by a control sequence
that has becn defined elsewhere. For example, you might type

\def \firsttime{T)

112 Chapter 23

at the beginning of a chapter; then
\if T\firsttime{\gdef\firsttime{F}}\elso{a}

will do a every time except the first, in each chapter. (Note that \gdef must be used
here instead of \def, otherwise the new definition of \firsttime would be rescinded
immediately!)

@ Now let's look at some examples. First, suppose you want your output pages to be
numbered consecutively, with a number in font ¢ centered at the bottom of each
page. Suppose further that you want a running title in font b to be centered at the
top of each page, except on the first page of each chapter. Each page (not counting
margins) is to be 4} inches wide and 74 inches tall; but the pages output by TEXs page
builder will have a height of 8} inches and a maximum depth of & inch, so that you
can put the running title in a half-inch strip at the top of each page, and you can put
the current page number in a 5- to 4-inch strip at the bottom. Let's assume that font
z is a big bold font suitable for chapter titles. Then the \output might be designed as
follows:

\heized.5in\vsizeb. .Bin\maxdepth.0625in % inner page dimensions

\gdef\tpago{F) % \tpage will be T for title pages
\def\chapterbegingli. $2{ % control sequence for new chapters
\vfillleject % finish previous chapter and begin a new page
\gdef\tpage{T) A first page of chapter is a title page
\vekip .5in A extra space above chaptar title
\ctrline{\:z Chapter #i.)} % first line of title
\vskip .25in A extra space betwoen title lines
\ctrline{\:z #2} % second line of title
\vskip .5in % space between title and first paragraph
\mark{$2) % insert a mark contalining the running title
\noindent % first paragraph will not be indented
\tenpoint\!} % and 1t will use 10-point type fonts
\output{\vjust to 7.5in{ & begin output of 7.5-inch page
\baselineskipOpt\linaskipOpt % turn off interline glua

\if T\tpage{ % test if title page

\gdef\tpage{F)}\vekip.51n} % no running head on title page
\else{\vjust to.15in{\vfill % fi11 space above running head
\hjust to 4.51n{\h1’111\:b\topmark\hf111}} % running head
\vskip .35in} % space between running head and inner page

Output routines 113

\page % place the compiled inner page just below top strip

\wvfill % space between inner page and page number
\hjust to 4.5in{\hfill\:c\countO\hfill}) % page number
\advcountO)} % increase page number, end the \output routine

With this sctup one types, for example, “\chapterbegin 13. {UNLUCKY NUMBERS}"
at the beginning of chapter number 13. Appendix E shows how the more elaborate page
layout of The Art of Computer Programming can be handled.

@ »Exercise 23.1: Why is it better for this \output routine to say “\hjust to
4.5in"” than tosay “\hjust to siza"?

@ »Exercise 23.2: How would you change the above \output routine so that pages will
come out with the top line of non-title pages saying “{page number)_._(running
titlc)” on even-numbered pages and “(running title)___(page number)” on odd-numbered
pages? (Leave the page number at the bottom of title pages.)

One more example should suffice to give the flavor of \output routines. Suppose

you wish to typeset three-column format: three individual columns 6 tall by 1%"
wide are to appear on a 7" X 5" page, with vertical rules between the columns. The
page number is to be placed in the upper left corner of even-numhbcred pages and in
the upper right corner of odd-numbered pages. For this application you should use
\hsize 1.5inand\vsize 6in; and, say, \maxdepth.2in. (Recall that \maxdepth
is the maximum amount by which the depth of the bottom line on a page is allowed
to overhang the \veize.) The \output routine has to save the first two “pages” it
receives, then it must spew out three at once. There are at least two ways to do the job:

Solution 1. \output{\outa}
\def\outa{\output{\outb}\savaei\pagae}
\def\outb{\output{\outc}\save2\page)
\def\outc{\output{\outa}

\vjust to 7in{\baselineskipOpt\lineskipOpt
\vjust to 10pt{\vfill
\hjust to Bin{\:b
\ifevenO{\countO\hfill}\alsa{\hfi11\countO}>>
\vfill
\hjust to Bin{\boxi\hfill\vrule\hfill\box2
\hfill\vrule\hfill\pagel}}
\advcountO} '

114 Chapter 238

Solution 2. \def\firstcol{T} | ' |
\output{\if T\firstcol{\gdef\firstcol{F}
\gdef\secondcol{T}\savei\page)
\else{\if T\secondcol{\gdef\secondcol {F}
\save2\page}
\elso{\gdef\firstcol{T}
- \vjust to Tin{...(as before)...>\advcountO}}}

Solution 1 is more elegant, but the switching mechanism of Solution 2 can be used in
more complicated situations. :

<24> Summary of vertical mode

Now here is a complete specification of everything you are allowed to type in
vertical mode. This chapter and the following two are intended to be a concise
and precise summary of what we have been discussing rather informally. Perhaps
it will be a useful reference when you're stuck and wondering what TEX allows
you to do.

Chapter 13 explains the general idea of vertical mode and restricted vertical mode.
In both cases TiZX is scanning a “(vlist)” and building a vertical list containing boxes
and glue; this list might also contain other things like penalty and mark specifications.
The vertical list is empty when TiX first enters vertical mode or restricted vertical
mode, and it remains empty unless something is appended to it as explained in the
rules below. For brevity the rules are stated for vertical mode; the same rules apply to
restricted vertical mode unless the contrary is specifically stated.
When TEX is in vertical mode, its next action depends on what it sees next, ac-
cording to the following possibilities:
e (space) Do nothing.
This notation means: If TEX is in vertical mode and you type a blank space, nothing
happens and TX stays in vertical mode. (The end of a line in an input file counts as
a blank space, and so do certain other characters, as explained in Chapter 7.)
e \par Do nothing.
End of paragraph isignored in vertical mode. This applies also to the “end of paragraph” 1
signal that TjiX digests when you have blank lines in the input or at the end of a file page. |
o (unknown control sequence) “! Undefined control sequence.”

For example, if you type “\hjsut” instead of “\hjust”, and if \hjsut hasn't been
defined, you get an error message showing that \njsut has just been scanned. To

Summary of vertical mode 115

recover you can type “1” (for insertion); then (when prompted by “«") type “\hjust”
and {carriage-return), and TEX will resume as if the misspelling hadn't occurred.

o {defined control scquence) Macro call.
A control sequence that has been defined with \def or \gdet, for cxample a control
sequence defined in a book format such as Appendix B or Appendix E, followed by its
“arguments” (if any), will be replaced in the input as explained in Chapter 20.

o { Begin a new group.
A new level of nomenclature begins, as explained in Chapter 5; a matching } should
appear later. The matching } usually occurs in vertical mode, but it might occur in
horizontal mode (in the midst of some paragraph). The beginning of a new group does
not affect the current vertical list.

e} End a group or an operation.

The matching { is identificd, and all intcrvening \defs, \chcodes, \chpars, current
font definitions, and glue parameter definitions are forgotten. If the matching { is the
beginning of a group, TEX remains in vertical mode and the current vertical list is not
affected. Otherwise TiX finishes whatever the { marked the beginning of, or you get
an error message. The error messages are “Too many }“s”, meaning that there was
no matching {; or “Extra }", meaning that an unmatched right brace appears in the
(va) list of some alignment prcamble; or “Missing \cr inserted”, meaning that the
matching { wasin “\valign{spcc){". In the former cascs the } is ignored; in the latter
case a \cr is inserted.

e \hrule(rule spec) Append a horizontal rule.
The specified horizontal line is appended to the current vertical list. (See Chapter 21
for further details.) TEX remains in vertical mode.

e (box) Append a box.
Here (box) mecans one of the following:

\h just{spec){(hlist)} box formed in restricted horizontal mode

\v j ust(spec){(vlist)} box formed in restricted vertical mode
\box({digit) saved box (e.g., \boxi was saved by \savei)
\page current page (allowed only in output routines)

And (spec) is one of the following:

to (dimen) desired width or height is specified
to siwme - width \hsize or height \vsize
(nothing) -use natural width or height

expand (dimen) augment natural width or height

118 Chapter 2

(Chapters 21 and 23 give further details.) The specified box is appended to the cur-
rent vertical list, with appropriate interline glue depending on \baselineskip and
\lineskip inserted just before it, as described in Chapter 15. (After using \box or
\page, that \box or \page becomes null, s0 it can't be used twice.) Then TEX resumes
scanning in vertical mode.

\moveleft

* \moveright

The specified box is appended to the current vertical list as described above, but its

contents are shifted left or right by the specificd amount. (The right edge of the shifted

box is uscd in figuring the maximum width of the box ultimately constructed from the

current vertical list; but if the left edge of the appended box extends to the left of the
current reference point, it will stick out of the constructed box.)

e \save(digit)(box) Save a box.
The specified box is stored away for possible later use by “\box(digit)". Then TEX
resumes scanning in vertical mode, having made no change to its current vertical list.

\vfill
° (\ veki p(glue)> Append glue.

The specified glue is appended to the current vertical list. (See Chapter 12 for details
about glue.) TiX remains in vertical mode.

{box) \vfill
° \1nadars<(mle> \vaki p(gluc) Append leaders.
The specificd leaders are appended to the current vertical list; this will have an effect
like the specified glue except that the box or rule will be replicated in the resulting
space (see Chapter 21). T}X remains in vertical mode.

e \noindent Begin nonindented paragraph. ,
(Not allowed in restricted vertical mode.) The glue currently specified by \parskip
is appended to the current vertical list. Then TEX switches from page building to
paragraph building by going into horizontal mode: What you type from now on until
the next \par will be assembled into a paragraph and appended to the current vertical
list.

>(dimen)(box} Append a shifted box.

{char)
o { {accent) Begin indented paragraph.

$
(Not" allowed in restrictcd vertical mode.) Here (char) stands for either (letter) or
(otherchar) or (nonmathletter) or \e¢har(number), all of which are defined in Chapter
25. When any of these things occurs in vertical mode, TEX thinks it is time to start
a paragraph. The operations described above for \noindent are performed; then an

Summary of verlical mode 117

empty box whose width is the current value of \parindent is placed at the beginning
of a horizontal list, which will becomne the next paragraph. Then processing contmues
as if the {char) or (acccnt) or $ had appcared in horizontal mode. Sce Chapter 25'for a
description of what happens next. (Note that a paragraph won't start with a box; if
you really want to start a paragraph with a box, enclose it in $'s.)

e \ponalty(number) Append a page break penalty.
(Has no effect in restricted vertical mode.) If the specified number is 1000 or more,
page breaking is inhibited here; otherwise this number is added to the badness when
deciding whether to break a page at this place. A negative penalty indicates a desirable
place to break. (See Chapter 15.) TiX remains in vertical mode.

® \eject Force a page break.
(Has no effect in restricted vertical mode.) A new page will start at this place in
the current vertical list, no matter how “bad” it may be to brecak a page here. Two
consccutive \e jects count as a single one. TEX remains in vertical mode.

e \mark{{mark text)> Append a mark.
(Not allowed in restricted vertical mode.) The mark text is attached invisibly to the
current vertical list, with its defined control sequences expanded. T)3X remains in vertical
mode.

\botmark

(Allowed only in \output routines)) 03X inserts the specified marlk text into its input;
see Chapter 23.

® \x Ixtension to TEX.
The control scquence \x allows special actions that might exist in some versions of TEX.
(Such extcnsions are obtained by loading a scparately compiled module with the TEX
system; individual users might have their own special extension modules.)

¢ \halign(spec){(alignment preamble)\er{alignment entries}y Append alignment.
A vertical list of aligned rows is constructed as explained in Chapter 22, and this list
is appended to the current list. Interline glue will be calculated as if the aligned boxes
had been appended one by one in the ordinary way.

\t°Pma"k> Inscrt the text of a stored mark.

®
\ecr
The symbols ® and \cr are detected deep inside TiX's scanning mechanism when they
occur at the proper nesting level of braces, because they cause TiX to start scanning a
“(v,)" as explained in Chapter 22. Therefore if these symbols appcar in vertical mode,
they are ignored, and you get the crror message “There’s no \halign or \valign
going on.”

° Spurious alignment delimiter.

118 Chapler 24

® \ENDV End of alignment entry.

An \ENDYV instruction is inserted automatically by TEX at the end of each “(v;)” list of
an alignment format. (You can't actually give this control sequence yourself ; it only
occurs implicitly.) If thealignment entry involves an unmatched {, you get the message
“Missing } inserted.” Otherwisc TjX finishes processing this entry, by \vjusting
the current vertical list, and appends the resulting box to the current column of the
current \valign. (Interline glue is not uscd, but \tabskip glue will be inserted.) If the
present \ENDV corresponds to an alignment entry that was followed by \cr, TFX looks
at the next part of the input as follows: Blank spaces are ignored; “\noal ign{(hlist)}”
causes the (hlist) to be processed in restricted horizontal mode, and the resulting horizon-
tal list is appended to the horizontal list of the current \valignment; “}" terminates
the \valign; and anything elsc is assumed to begin the next column of the alignment,
so (uy) is inscrted into the input. On the other hand, if this \ENDV corresponds to an
entry that was followed by ®, T}XX inserts (u,,) into the input. In either case TEX
remains in restricted vertical mode to process the new alignment cntry, beginning with
an empty vertical list.

\topinsert .

\bozinaort Uvlist)y
(Not allowed in restricted vertical mode.) TEX reads the specificd (vlist) in restricted
vertical mode and constructs the corresponding vertical list. This list will be inserted
at the top or bottom of the next page on which it will fit, followed by \topskip glue
or preceded by \botskip glue, respectively (see Chapter 15). If possible, two or more
inserts will appear on the same pagc in first~in-first-out order. Notc that stretchable
or shrinkable glue in the vertical list is not set until the final page is made up. After
the specificd list has been constructed and stored in a safe place, T2X resumes vertical
mode where it left off.

Floating insertion of a vertical list.

dof ‘ '
° <\\gd°a f> (controlseq}{parameter text){(result text)y Define a control sequence.

The specified control sequence is defined as described in Chapter 20. TEX remains in
vertical mode, and the current vertical list is not affected. You arc not allowed to
redefine certain control sequences like \: and \baseli neskip, because TEX relics on

these to control its operations at critical points. Definitions with \dof disappear at the
end of the current group; definitions with \gdef do not. It is best not to apply both
\def and \gdef to the same control scquence in different parts of a manuscript.

[J \:
\mathex

The specified font code is selected; “\:" selects the current font to be used in horizontal
mode, as explained in Chapter 4, while “\mathax” selects the current ex font to be

(font) Define the current font.

Summary of vertical mod.e 119

used in mathematics mode, as explained in Chapter 18. If this code is making its first
appearance in the manuscript it must be followed by the font file name (see Chapter 4
and Appendix S) followed by a space. Current font code selections are “local” and will
be forgotten at the end of the current group. TEX remains in vertical mode, and the
current vertical list is not affected.

\mathrm '
° <\math1t>(font)(font)(font) . Decfine current math fonts.
\mathey

The specified font codes are selected, providing up to three sizes of characters to be
used in math formulas as explained in Chapter 18. If any font code is making its first
appearance in the manuscript, it must be followed by the font file name (see Chapter
18 and Appendix S) followed by a space. Current font code selections are “local” and
will be forgotten at the end of the current group. TEX remains in vertical mode, and
the current vertical list is not affected. '

o {(dimenparam){dimen) Sct a dimension parameter.
Here (dimcnparam) stands for oncof the control sequences \hsizae, \vsize, \maxdepth,
\parindent, \topbaseline. The corresponding TEX parameter is set equal to the
specified dimension; TiEX remains in vertical mode, and the current vertical list is not
affected. This assignment is “global,” it holds even after the end of a group. The initial
default values of these five parameters are (324, 504, 3, 0, 10) points, respectively.

e (glueparam){glue) Define a glue parameter.
Here (glueparam) stands for one of the control sequences \1ineskip, \basalineskip,
\parskip, \dispskip, \dispaskip, \dispbskip, \topskip, \botskip, \tabskip.
The corresponding TjiX paramecter is set equal to the specified glue; TEX remains in
vertical mode, and the current vertical list is not affected. This assignment is “local,”
it will be forgotten at the end of the current group. The initial value for all these types
of glue is zero.

° \chcode(numbcrl)«(numberg) . Define a character interpretation.

The character whose seven-bit code is (number;) is subsequently treated as being of
category (numbery), where the category codes are described in Chapter 7. This definition
will be local to the current group. TEX remains in vertical mode, and the current vertical
list is not aflected. :

e \ch par(numben)o—(numberg) Define an integer parameter.
TEX's internal parameter (numbers) is set equal to (numbers). Here is a table of the

120 Chapter 24

internal parameters:

Number Name Default value Reference
0 \trace *345 Chapter 27
1 \jpar 2 Chapter 14
2 hyphenation 50 Chapter 14
3 doublchyphen 3000 Chapter 14
4 widowline 80 Chapter 15
5 brokenline 50 Chapter 15
6 binopbreak 95 Chapters 14418
7 relbreak 50 Chapters 14&18
8 \ragged 0 Chapter 14
9 displaybreak 500 Chapter 15

This definition will be local to the current group. TX remains in vertical mode, and
the current vertical list is not affected.

for (number)
® \hangi ndent(dimen)(after (number)> ~ Set up hanging indentation.
(nothing)
This instruction causes a specified number of lines of the next paragraph to be indented
either at the left margin or the right margin (see Chapter 14). TEX remains in vertical
mode, and the current vertical list is not affected.

e \output{({vlist)} Set the output routine.
The specified (vlist) is stored for later use when pages are output (scc Chapter 23). TEX
remains in vertical mode, and the current vertical list is not affected. This assignment
is “global,” it will hold even after the end of the current group.

» \setcount(digit){optional sign){number) Set a specified counter.
One of ten counters, indicated by the specified digit, is set to the specified integer value
(see Chapter 23). This assignment is “global,” it is not rescinded at the end of a group.
TEX remains in vertical mode, and the current vertical list is not affected.

e \advcount(digit) Advance the specified counter.

The magnitude of the specified counter is increased by 1. TEX remains in vertical mode,
and the current vertical list is not affected,

e \count(digit) Insert the specified counter.
The specified counter is converted to characters (see Chapter 23) and inserted into the
input; this will cause TEX to begin a new paragraph as explained earlier.

Summary of horizontal mode 121

\ifeven(digit) | N
* \\if (cl'xar;)(charg)>{<tr“° text)>\else{(false text)» Conditional text.

TEX reads cither the true text or the false text, sce Chapter 23.

e \input (file name){space) Insert a file of text.
The specificd file of characters is inserted into the input at this place. After the file has
been read, T}2X will resume input at the present position (unless \end occurred in that

file).

e \end Stop.

(Not allowed in restricted vertical mode.) The current page is cjected, followed if
necessary by pages containing leftover material, until there is nothing more to eject.
Then if the last call on the output routine produced only a null box—for example, two
out of three calls on the output routines at the end of Chapter 23 will do this—a page
containing an empty box of size \nsize X\vsize is sent to the output routine, until
either gelting a nonnull output or until 25 consccutive null outputs have appeared.
Then TiX terminates: the output files are tidied up, and a friendly warning message is
issued if there is an unmatched “{” still waiting for its “}".

e \ddt Print debugging data.
If bit 4 of the \trace parameter is 1, TEX prints out its current activities (the lists
and pages it is currently building). Furthermore if bit “40 of the \trace parameter is
1, TEX will stop, giving you the chance to insert text on-line. TiX remains in vertical
modc, and the current vertical list is not affected.

e {(anything else) “! You can’t do that in vertical mode.”
If anything not listed above appcars in vertical mode, you get an crror message. TEX
ignores the token of input that broke the rules, and remains in vertical mode; the current
vertical list is not affected.

< 25> Summary of horizontal mode

Here is a complete specification of everything you are allowed to type in horizontal
mode. This chapter and the adjacent two are intended to be a concise and precise
summary of what we have been discussing rather informally. Perhaps it will be
a useflul reference when you're stuck and wondering what Tj7X allows you to do.

Chapter 13 explains the general idca of horizontal mode and restricted horizontal
mode. In both cases TEX is scanning an “(hlist)” and building a horizontal list contain-
ing boxes and gluc; this list might also contain other things like penalty and insertion
specifications. The horizontal list is empty when TX first enters horizontal mode or
restricted horizontal mode, and it remains empty unless something is appended to it as

122 Chapter 25

explained in the rules below. For brevity the rules are stated for horizontal mode; the
same rules apply to restricted horizontal mode unless the contrary is specifically stated.

When T}X is in horizontal modc, its next action depends on what it sees next,
according to the following possibilities:

e (unknown control sequence) “! Undefined control saquence.”
For example, if you type “r\Aocle” instead of “r\A ole”, and if \Acle hasn’t been
defined, you get an error message showing that \Aole has just been scanned. To recover
you can type “i" (for insertion); then (when prompted by “«") type “\A ole" and
(carriage-return), and TEX will resume as if the mistake hadn't occurred.

e (defined control sequence) Macro call.
A control scquence that has been defined with \def or \gdef, for example a control
sequence defined in a book format such as Appendix B or Appendix E, followed by its
“arguments” (if any), will be replaced in the input as explained in Chapter 20.

e { Begin a new group.
A new level of nomenclature begins, as explained in Chapter 5; a matching » should
appear later. The matching } usually occurs in horizontal mode, but it might occur in
vertical mode (after the end of some paragraph). The beginning of a new group does
not affect the current horizontal list.

) End a group or an opcration.

The matching { is identified, and all intervening \defs, \chcodes, \chpars, font
definitions, and glue parameter definitions are forgotten. If the matching { is the begin-
ning of a group, TEX remains in horizontal mode and the current horizontal list is not
affected. Otherwise TjiX finishes whatever the { marked the beginning of, or you get
an error message. The error messages are “Too many }“s", meaning that there was
no matching {; or “Extra }”, meaning that an unmatched right brace appears in the
(vn) list of some alignment preamble; or “Missing \cr inserted”, meaning that the
matching { wasin “\halign(spec){". In the former cases the } is ignored; in the latter
case a \cr is inserted.

(letter)
o <(nonmathlctter)> Append a character box.
{otherchar)
Here (letter) normally means any of the characters A...Z and a. . .z, and (otherchar)
normally stands for any other character that has not been given a special meaning like the
special meanings often assigned to $ and @ and (carriage-return), etc. However, \chcode
can be used to reclassify any character, as cxplained in Chapter 7. A (nonmathletter) is
one of the control scquences \ss, \ae, \AE, \oe, \OE, \o, \0, mentioned in Chapter 9.
Each character has an associated 7-bit code that is used to select one of 128 characters
from the current font. (If no current font has been defined, you lose: TEX will come

Summary of horizontal mode 123

to a grinding halt.) Information stored with the current font is now examined to see
whether or not this character is the first of a ligature or kerned pair. If so, TEX looks
at the next character; when a ligature is completed, the two characters are repladed by
a new character (as specified in the font) and this new character might in turn be the
first of another ligature or kerned pair. In any event, a character box is appended to
the current horizontal list; and if a kerned pair is found, appropriate negative glue is
appended next, in such a way that the line-breaking and hyphenation algorithms will
not be confused. Furthermore if the character code is “055 (the code for “~") or if a
ligature ends with this particular code, a “\penalty 0" is automatically appended to
the horizontal list. TEX remains in horizontal mode.

® \char(number) Append a character box.
The {number) is reduced modulo 128, and TEX proceeds just as if an {otherchar) had
just been scanned having this 7-bit code.

e (accent){accentee) Append an accented character.

Here {accent) stands for one of the control sequences *, \ 7, \4, \v, \u, \=, \", \H, \b,
\s, \t, \a, \1, \¢, discussed in Chapter 9, or for “\accant(number)”"; and {accentee)
stands for either (letter) or (nonmathletter) or {otherchar) or \char{number), possibly
preceded by a new font definition “\:(font)”. The accent and accentee are made into
character boxes, and the accent is superimposed on the accentee, moving the accent left
or right if necessary so that it is centered (also taking into account the slantedness of the
characters and their heights, based on information stored with the fonts). Furthermore
the accent is raised or lowered in case the height of the accentee is different from the
“xheight” of the accent’s font (the height of lower case “x"). The width of the resulting
box is the width of the accentee; this box is appended to the current horizontal list,
and TEX remains in horizontal mode.

\Ui
Here (space) means either an explicit typed space or an implicit one obtained at the
end of a typed line. (Consecutive spaces are treated as single spaces, and spaces are
sometimes ignored, as explained in Chapter 7.) The current font specifies what sort
of glue should be inserted between words of a paragraph when they are typeset in that
font. The stretchability and shrinkability of this glue is modified by the “space factor,”
as explaincd in Chapter 12, except that no modification is made when “\u” has been
typed. Ti2X appends the glue toits current horizontal list and remains in horizontal mode.

° <(space)> Append variable space glue.

® \quad Append one quad of space.

Space glue amounting to one quad in the current font is appended to the current
horizontal list. TEX remains in horizontal mode.

124 h | Chapter 25

o \! Ignore space.
TEX looks at the next token of the input (expanding it if is a defined control sequence),
and discards it if it is a (space). The current horizontal list is not aff ected, and TEX
remains in horizontal mode.

o \- Append discretionary hyphen.
A “discretionary” hyphen is.appended to the current horizontal list. This means that
the current place is a legal place to break a line, with a specified penalty for hyphenation
(see Chapter 14). If the line actually breaks here, character number ‘055 from the
current font is inserted into the text, otherwise nothing is inserted. TEX remains in
horizontal mode. .

o \/ Append italic correction.
If the final entry on the current horizontal list is not a character box, you get an error
message

! Italic correction must follow an explicit character.

Otherwise an empty box whose width is the italic correction for the corresponding
character is appended to the current horizontal list. (This information is stored in the
font with each character, except in “ax fonts”; don't try to use italic correction with a
character from an ex font.) TiX remains in horizontal mode.

e \vrule(rule spec) Append a vertical rule.
The specified vertical line is appended to the current horizontal list. (See Chapter 21
for further details.) TEX remains in horizontal mode,

e (box) Append a box.
Here (box) means one of the following:

\h just(spec){(hlist)> box formed in restricted horizontal mode

\v just(spec){{vlist)> box formed in restricted vertical mode
\box{digit) saved box (e.g., \boxi was saved by \save1)
\page current page (allowed only in output routines)

And (spec) is one of the following:

to (dimen) desired width or height is specified
to size width \heize or height \vsize
{nothing) use natural width or height

expand (dimen) augment natural width or height

(Chapters 21 and 23 give further details.) The specified box is appended to the current
horizontal list, and TEX resumes scanning in horizontal mode. (After using \box or
\page, that \box or \page becomes null, so it can't be used twice.)

Summary of horizontal mode 125

\raise
[}
\lower
The specified box is appended to the current horizontal list as described above, but its
contents are shifted up or down by the specified amount. (The top and bottom edges
of the shifted box are used to compute the height and depth of the box ultimately
constructed from the current horizontal list, as explained in Chapter 21.)
¢ \save(digit)(box) Save a box.
The specified box is stored away for possible later use by “\box{digit)". Then TEX
resumes scanning in horizontal mode, having made no change to its current horizontal
list.

(dimen){box) Append a shifted box.

\hfill
* \\nski p{glue)
The specificd glue is appended to the current horizontal list. (See Chapter 12 for details
about glue.) TyX remains in horizontal mode.

° \loadors<é§$’3 <\h::f;(lgiue)> Append leaders.

The specified Jeaders are appended to the current horizontal list; this will have an effect
like the specified gluc except that the box or rule will be replicated in the resulting
space (sec Chapter 21). TEX remains in horizontal mode.

e ${formula)$ Append a math formula.
The specified (formula) is scanned in math mode, as explained in Chapter 26. This
results in a horizontal list, which is appended to the current horizontal list. Then TEX
resumes scanning in horizontal modc. Mathematics fonts (the so-called rm and it and
sy and ex fonts) must have been defined earlier.

e \par End of paragraph.
(Ignored in restricted horizontal mode.) 1f the current horizontal list is empty, nothing
happens. Otherwise the current horizontal list is “justified” using TjX’s line-breaking
routine described in Chapter 14; the resulting vertical list is appended to the current
vertical list of the page-builder, and T}X continucs in vertical mode as described in
Chapter 24. ‘

e $$(display)$$ Interrupt paragraph for display.
(Not allowed in restricted horizontal mode.) The current horizontal list is converted to
a vertical list just as if a paragraph had cnded, except that hanging indentation is not
reset. Then the (display) is processed, as explained in Chapter 26, resulting in another
vertical list that is given to the page-builder. (A displayed formula counts as either
two or three lines, with respect to the line count in hanging indentation, depending on
whether \dispaskip or \dispskip glue is appended above the formula, f. Chapter

Append glue.

e

128 Chapter 25

19.) Then TEX recturns to horizontal mode, ignoring a space if it follows the closing
“$$". At this point T}2X's current horizontal list will be empty, so the paragraph will
continue without indentation. Mathematics fonts (the so-called rm and it and sy and
ex fonts) must have been defined earlier.

e \penalty(number) Append a line break penalty.
If the specified number is 1000 or more, line breaking is inhibited here; otherwise this
number is added to the badness when deciding whether to break a line at this place. A
negative penalty indicates a desirable place to break. (Sce Chapter 15.) TEX remains
in horizontal mode.

® \eject Force a page and line break.
(Forces only a line break when in restricted horizontal mode.) A new line will start at
this place in the current horizontal list, and a new page will start with this new line
when it is appended to the page builder’s current vertical list, no matter how “bad” it
may be to break a page or line here. (See the discussion in Chapter 14.) TEX remains
in horizontal mode.

\topmark
\botmark
(Allowed only in \output routines.) TEX inserts the specified mark text into its input;
see Chapter 23.
o \x Extension to TRX. .
The control scquence \x allows special actions that might exist in some versions of TEX.
(Such extensions are obtained by loading a scparately compiled module with the TEX
system; individual users might have their own special extension modules.)
e \valign(spec){(alignment preamble)\cr(alignment entrics)> Append alignment.
A horizontal list of aligned columns is constructed as explained in Chapter 22, and this
list is appended to the current horizontal list. Then TEX resumes scanning in horizontal
mode.

®
\er
The symbols ® and \cr are detccted decp inside TX's scanning mechanism when they
occur at the proper nesting level of braces, because they cause TX to start scanning a
“(v4)" as explained in Chapter 22. Therefore if these symbols appear in horizontal mode,
they arc ignored, and you get the error message “There’s no \halign or \val ign
going on.”
e \ENDV End of alignment entry.

An \ENDY instruction is inscrted automatically by TEX at the end of each “(v;)" list of
an alignment format. (You can't actually give this control sequence yourself; it only

> Insert the text of a stored mark.

° Spurious alignment delimiter.

Summary o] horizontal mode 127

occurs implicitly.) If the alignment entry involves an unmatched {, you get the message
“Missing } insarted.” Otherwisc T}X finishes processing this entry, by \hjugting
the current horizontal list, and appends the resulting box to the current row of the
current \halign. (The \tabskip gluc will also be inserted.) If the present \ENDV
corresponds to an alignment entry that was followed by \cr, Ti2X looks at the next part
of the input as follows: Blank spaces are ignored; “\noalign{(vlist)}" causecs the {vlist)
to be processed in restricted vertical mode, and the resulting vertical list is appended to
the vertical list of the current \hal ignment; “}" terminates the \halign; and anything
else is assumed to begin the next row of the alignment, so (u;) is inscrted into the input.
On the other hand, if this \ENDV corresponds to an entry that was followed by ®, TEX
inserts (u,.;) into the input. In either case TiX remains in restricted horizontal mode
to proccss the new alignment entry, beginning with an empty horizontal list.

\topinsart . _ _ o
t B .
\botinsort {{vlist)> ound insertion of a vertical list

(Not allowed in restricted horizontal mode.) TEX reads the specificd (vlist) in restricted
vertical mode and constructs the corresponding vertical list. This list will be inserted
at the top or bottom of the same page on which the line containing the present place in
the current horizontal list, followed by \topakip gluc or preceded by \botskip glue,
respectively. (Sce Chapter 15; this mechanism is intended primarily to accommodate
illustrations and footnotes.) If necessary, two or more inscrts will appcar on the same
page in first-in-first-out order. Note that stretchable or shrinkable glue in the vertical
list is not sct until the final page is made up. After the specified list has been constructed
and stored in a safc place, TEX resumes horizontal mode where it left off.

\gdef

The specified control sequence is defined as described in Chapter 20. A {space) following
the definition will be ignored. TEX rcimains in horizontal mode, and the current horizon-
tal list is not afTected. You are not allowed to redefine certain control sequences like \ :
and \baselineskip, becausc TEX rclics on these to control its operations at critical
points. Definitions with \def disappcar at the end of the current group; definitions
with \gdef do not. It is best not to apply both \def and \gdef to the same control
sequence in different parts of a manuscript.

° < \def > {controlseq){parameter text){(result text)} Definc a control sequence.

. N {font) Define the current font.
\mathex

The specified font code is selected; “\:” selects the current font to be used in horizontal
mode, as explained in Chapter 4, while “\mathex” seclects the current ex font to be
used in mathematics mode, as explained in Chapter 18. If this code is making its first

128 Chapter 25

appearance in the manuscript it must be followed by the font file name (see Chapter 4
and Appendix S) followed by a space. Current font code selections are “local” and will
be forgotten at the end of the current group. TEX remains in horizontal mode, and the
current horizontal list is not affected.

\mathrm '
. <\math1t>(font)(font)(font) Define current math fonts.
\mathey

The specificd font codes are selected, providing up to three sizes of characters to be
used in math formulas as explained in Chapter 18. If any font code is making its first
appearance in the manuscript, it must be followed by the font file name (see Chapter
18 and Appendix §) followed by a space. Current font code selections are “local” and
will be forgotten at the end of the current group. TEX remains in horizontal mode, and
the current horizontal list is not affected.

e (dimenparam){dimen) Set a dimension parameter.

Here (dimenparam) stands for one of the control scquences \hsize, \vsize, \maxdepth,
\parindent, \topbaseline. The corresponding TEX parameter is set equal to the
specified dimension; TEX remains in horizontal mode, and the current horizontal list is
not affected. This assignment is “global,” it holds even after the end of a group. The
initial default values of these five paramcters are (324, 504, 3,0, 10) points, respectively.

o {glucparam){glue) Dcfine a glue parameter.,
Here (glucparam) stands for one of the control sequences \1ineski P, \baselineskip,
\parskip, \dispskip, \dispaskip, \dispbskip, \topskip, \botskip, \tabskip.
The corresponding T}X parameter is set equal to the specified gluc; TEX remains in
horizontal mode, and the current horizontal list is not affected. This assignment is
“local,” it will be forgotten at the end of the current group. The initial value for all
these typcs of glue is zero.

® \chcoda(number;)+(numbers) Define a character interpretation.
The character whose seven-bit code is (number;) is subscquently trcated as being of
category (numbers), where the category codes are described in Chapter 7. This definition
will be local to the current group. TiX remains in horizontal mode, and the current
horizontal list is not afTected.

® \chpar{number;)«(number,) Dcfine an integer parameter.
TEX's internal parameter {(numbery) is sct equal to (numbers). Here is a table of the

Summary of horizontal mode 129

internal parameters:

Number Name Default value Refercnce
0 \trace ‘345 Chapter 27
1 \jpar 2 Chapter 14
2 hyphenation 50 Chapter 14
3 doublehyphen 3000 Chapter 14
4 widowline 80 Chapter 15
5 brokenline 50 Chaptcr 15
6 binopbreak 95 Chapters 14418
7 relbreak 50 Chapters 14&18
8 \ragged 0 Chapter 14
9 displaybreak 500 Chapter 15

This dcfinition will be local to the current group. TX remains in horizontal mode, and
the current horizontal list is not aflected. .

for (number)
® \hangi ndent(dimen)<after (numbcr)> Set up hanging indentation.
{nothing)
This instruction causes a specified number of lines of the next paragraph to be indented
either at the left margin or the right margin (sce Chapter 14). TiEX reinains in horizontal
mode, and the current horizontal list is not affected.

e \output{(vlist)}(optional spacc) Set the output routine.

The specified {vlist) is stored for later use when pages are output (see Chapter 23).
TEX remains in horizontal mode, and the current horizontal list is not affected. This
assignment is “global,” it will hold even after the end of the current group.

e \setcount{digit){optional sign)(numbecr) Sct a specified counter.
Onec of ten counters, indicated by the specified digit, is sct to the specificd integer value
(see Chapter 23). This assignment is “global,” it is not rescinded at the end of a group.
TEX remains in horizontal mode, and the current horizontal list is not affected.

e \advcount(digit) Advance the specified counter.

The magnitude of the specified counter is increased by 1. TEX remains in horizontal
mode, and the current horizontal list is not affected.

e \count(digit) Insert the specified counter.

The specified counter is converted to characters (see Chapter 23) and inserted into the
input; TEX will read it in horizontal mode.

130) Chapler 25

i f{char;){char,)

TEX reads either the true text or the false text, see Chapter 23. Spaces following the
“{(true text)}” and “{(false text)}" are ignored.

e \ddt Print debugging data.
If bit 4 of the \trace parameter is 1, TiX prints out its current aclivities (the lists and
pages it is currently building). Furthermore if bit “40 of the \trace paramecter is 1,
TEX will stop, giving you the chance to insert text on-line. TiX remains in horizontal
mode, and the current horizontal list is not afTected.

. <\\i faven(digit) >{(true text)\else{(false text)} Conditional text.

e {anything clse) “! You can’t do that in horizontal mode.”
If anything not listed above appears in horizontal mode, you get an crror message. TEX
ignores the token of input that broke the rules, and remains in horizontal mode; the
current horizontal list is not afTected. '

<<26> Summary of math mode

Here is a complete specification of everything you are allowed to type in math
mode or display math mode. This chapter and the previous two are intended
to be a concise and precise summary of what we have been discussing rather
informally. Perhaps it will be a useful reference when you're stuck and wondering
what TX allows you to do.

Chapter 13 cxplains the general idea of math mode and display math mode. In
both cases T}X is scanning an “(mlist)” and building a horizontal list containing boxes,
glue, and line-breaking information. The (mlist) is called a (display) if it is scanned
in display math mode, a (formula) if scanned in ordinary math mode. Mathematics
processing actually takes place in two stages: first the entire formula (up to the end
of math mode) is input and made into a “rec structure,” then this tree is converted
into the desired horizontal list. The reason for doing the job in two stcps is that TEX's
language makes it impossible in general to determine the style for sctting formulas as
the formulas are being read in (e.g., a subsequent “\over” might change everything). It
is convenient, however, to describe the rules below as if TEX had clairvoyance, knowing
what style to usc as it reads the input. Please keep in mind that the correct style will
be chosen for subformulas, according to the rules in Chapters 17 and 18, even though
the following description makes that scem somewhat miraculous. For brevity the rules
below arc statcd for math mode; the same rules apply to display math mode unless the
contrary is specifically stated.

When TEX is in math mode, its next action depends on what it sees next, according
to the following possibilitics:

Summary of math mode 131

e (space) Do nothing.
This notation means: If TEX is in math mode and you type a blank space, nothing
happens and TEX stays in math mode. (The end of a line in an input file counts as a
blank space, and so do certain other characters, as explained in Chapter 7.)

e (unknown control scquence) “! Undefined contrel scquence.”
For example, if you type “\alfa" instead of “\alpha”, and if \alfa hasn’t been
defined, you get an error message showing that \alfa has just been scanned. To recover
you can type “i" (for inscrtion); then (when prompted by “x”) type “\alpha” and
(carriage-return), and TEX will resumic as if the mistake hadn't occurred.

e {(defined control sequence) Macro call.
A control sequence that has been defined with \def or \gdef, for example a control
scquence defined in 2 book format such as Appendix B or Appendix E, followed by its
“arguments” (if any), will be replaced in the input as explained in Chapter 20.

o {(mlist)} Append a subformula.
The {mlist) is processcd in math mode and \hjusted into a box having its natural
width. This box is then appended to the current list as an “Ord” box. Definitions inside
the subformula are forgotten afterwards.

e \left{dclim){mlist)\right{dclim) Append a subformula with variable delimiters.
The (inlist) is processed in math mode, and surrounded by delimiters of sufficient size
to contain it, as explained in Chapter 18. The resulting list is \hjusted and appended
to the current list as an "Ord” box. Definitions inside the subformula are forgotten
afterwards.

*) “Extra }."

The matching {, if any, lics outside the $ or \1eft that precedces the current {mlist),
so an error message is issued and the } is ignored.

e \right “Extra \right.” or “Missing } inserted.”
The matching \1eft, if any, lics outside the $ or { that preceded the current (mlist),
80 an error message is issued. TiX automatically inserts a “}" if it appcars to be missing.

o3 “Missing \right. inserted.” or “Missing } inserted.”
The matching $, if any, lies outsidc the \left or { that preceded the current (mlist),
s0 an error message is issued and T}:X automatically inserts what it assumes was missing,.

(letier) >

o { (mathchar) Append a character box.
<(othcrchar) '

Here (letbter) normally means any of the characters A...Z and a. . .z, and {otherchar)

normally stands for any other character that has not been given a special meaning like the

special meanings often assigned to $ and ® and {carriage-return}, etc. However, \chcode

132 Chapter 26

can be uscd to reclassify any character, as explained in Chapter 7. A {mathchar) is
one of the many control sequences \alpha, \beta, etc. listed in Appendix F. Each
(mathchar) has an associated 9-bit code that is used to select one of 512 characters from
TEX’s currcnt math fonts in the desired size; each (letter) and {otherchar) also has an
associated 9-bit code, determined from its 7-bit code by using a table in Appendix F.
Each character also has an associated catcgory (Ord or Op or Bin, ctc.), as explained
in Chapter 18 and Appendix F; these categories are used to determine spacing and
line-breaking. The character box is appended to the current list and TEX continues
scanning in math mode. (Note: The italic correction is included when computing the
width of this box. However, it will be removed by TEX if this box has a subscript but
no supcrscript; thus, subscripts will be closer to letters like “P”. The spacing on TEX's
math fonts is intended to make formulas look right when typesct by TEX's rules, so
it is quite different from spacing that makes text look right; cf. the cxamples of fonts
cmil0 and cmtil0 in Chapter 18.)

® \char(number) Append a character box.
The (number) is reduced modulo 512, and TiX proceeds just as if a {mathchar) of
category Ord has just been scanned having this 9-bit code.

e T{atom) Superscript the previous box.

(Here and in two rules that follow, an (atom) is cither a single character (i.e., (letter) or
{mathchar) or {otherchar) or \char{number)) or a subformula of the form “{({mlist)}".
Atoms may be regarded as rigid boxes that will be combined to build up larger formulas.)
If the last element of the current list is not a box, append a null box. Otherwise if the last
box of the current list has already been superscripted, report a “Double su perscript”
error. Attach the box corresponding to the {atom) as the superscript of the last box of
the current list.

e l{atom) Subscript the previous box.
Subscripting is entircly analogous to superscripting.

{mathcontrol)
{accent)

Here (mathcontrol) stands for one of the nine control sequences \eqrt, \underline,
\overline, \mathop, \mathbin, \mathral, \mathopen, \mathcloze, \mathpunct;
and (accent) stands for one of the control sequences N VS NA Y\, A=\, \H, \b,
\s, \t, \a, \1, \c, discusscd in Chapter 9, or for “Naccent{number)”. (The {number)
in the latter case is reduced modulo 512.) Each of these does something to the box
formed from the (atom): \aqrt inserts a variable-size radical sign in front of the box
and a line over the box (and a little blank space above that linc); \underline and
\overline insert a line and a little blank space under or over the box; the control
sequences \mathop, ..., \mathpunct are simply used to classify the box as type Op,

(atom) Build up a formula.

Summary of math mode 133

..+, Punct, respectively; and an accent is centered over the box. (Accents in horizontal
mode are corrected for slant, but in math mode they are simply centered; in both.cases
they are raised or lowered by the same amount when applied to the same letter.) The
box resulting from the specified operation is appended to the currcnt list, and TEX
continucs in math mode.
e (mathglue) Append glue based on the current style.

Here (mathglue) means one of the control sequences \,, \L, \>, \;, \quad, \2, \'}, \7?,
\<, \g, dcscribed in Chapter 18. The corresponding glue is appended to the current
list, and TEX continues in math mode.

. \hfill
\hskip{gluc) |
The specificd glue is appended to the current list. (Sce Chapter 12 for details about
glue, and sce Chapter 17 for an example of \hf111 used in the numcrator of a formula.)
TX remains in math mode.
e (box) Append a box.
Here (box) means one of the following:

> Append explicit glue.

\h just(spec)y{({hlist)} box formed in restricted horizontal mode
\vjust{spec){(vlist)} box formed in restricted vertical mode
\box(digit} saved box (e.g., \box1 was saved by \savel)
\page current page (allowed only in output routines)

And (spec) is one of the following:

to {dimen) desired width or height is specified
to size width \hsize or height \vsize
{nothing) use natural width or height
expand (dimen) augment natural width or height

(Chapters 21 and 23 give further details.) The specified box is appended to the current
list as an Ord box, and T}X resumes scanning in math mode. (After using \box or
\page, that \box or \page becomes null, s0 it can't be used twice.)

\raise (dimen){box) Append a shifted box.

\lower
The specificd box is appended to the current list as described above, but its contents
are shifted up or down by the spccificd amount.
o \save{digit){box) Save a box.
The specified box is stored away for possible later use by “\box(digit)". Then TEX
resumes scanning in math mode, having made no change to its current list.

134 Chapter 26

® \x Append discretionary times sign.
A “discretionary” X is appended to the current list. This means that the current place
is a legal place to break a line, with a specified penalty for hyphenation (see Chapter
14). If the line actually breaks here, character number *402 from the current font is
inserted into the text; otherwise nothing is inserted. TX remains in math mode.

e \limitswitch Change convention on displayed limits.
(Allowed only when the last item in the current list is an Op box; has an effect only
when setting a formula in display style.) 1}X"s normal convention for typesetting the
“limits” (i.e., the superscript and subscript) of an operator in display style is to center
them above and below the Op box—unless that Op box is a single character in the
currcnt ex font having a nonzero “italic correction” in the font; in the latter case the
subscripts and superscripts are normally set to the right as usual. But \1imitswitch
has the effect of reversing these conventions on the current opcrator: centering changes
to placement at the right and vice versa. Tj2X remains in math mode.

\over
e (\abovo(dimen) Separate numerator from denominator.

\atop
If a numerator has previously been set aside for the current formula, give an error message

! Ambiguous; you neoad another { and }.

and ignore the input. Otherwise the current list is set aside to be the numerator, and
the list after this point until the end of the formula will be the denominator. Afterwards
the numerator will be centered over the denominator, esscntially by inserting the glue
“Nhekip Opt plus 100000pt” at the left and right of whichever one has less natural
width and \hjusting it to the width of the other. The fraction linc inserted between
them will be at the height of the “axis” of the overall formula (a position specified
in the sy font of the appropriate size). The current ex font specifics a “default rule
thickness” to be used for the ruled lines in \sqrt, \underline, and \ovarline; this
same thickness is used for the fraction line in \over, while \above lets you specify
any desired thickness. (Scc the examples in Chapter 17.) The thickness is zcro for
\atop, i.c., there is no fraction line at all; in this case, the positioning of numerator and
denominator is somewhat different in order to take advantage of the extra flexibility.
A little extra space is attached to the left and right of the formula after the numerator -
and dcnominator have been pasted together. '
® \comb(dclim){delim) Build a combinatorial formula.

This:is like \atop, except that the specified delimiters are placed at the left and right
of the formula after the numerator and denominator have been positioned. (In fact,
“Natop"” is precisely equivalent to “\comb. ") TEX chooses the size of the delimiters
based only on the current style, regardless of the sizes of numerator and denominator.

Summary of math mode 135

\vcenter
\vtop '
The specified vertical list is constructed in restricted vertical mode, then it is \vjusted
and the resulting box is moved up or down so that (\vcentar) it is centered vertically
just as large delimiters are, or (\vtop) the basclinc of the topmost box in the vertical
list coincides with the baseline of the formula. Then TEX resumes its activities in math
mode.
e \penal ty{number) Append a line break penalty.
* ..~ has no effect in a subformula or a displayed formula.) If the specified number
is 1000 or more, line breaking is inhibited here; olherwise this number is added to the
badncss when deciding whether to break aline at this place. A negative penalty indicates
a dcsirable place to break. (Sce Chapter 15.) If this penalty is specificd immediately
following a Bin or Rel box, it overrides the penalty ordinarily placed there (see Chapter
18). TEX remains in math mode.
® \ejoct Force a page and linc break.
(This has no effect in a subformula or a displayed formula.) A ncw line will start at
this place in the current horizontal list, and a new page will start with this new line
when it is appended to the page builder's current vertical list, no matter how “bad” it
may be to break a page or line here. (Sec the discussion in Chapter 14.) TEX remains
in math mode. ‘
o {mathstylc) Definc the current style.
Here (inathstyle) stands for one of the control sequences \dispstyle, \textstyle,
\scriptstyle, \scriptscriptstyle discusscd in Chapter 17. The specified style
will apply from this point on, until it is redefined or until the end of the current formula
or subformula. T}oX remains in math mode.
® \eqno Separate a display from its equation number.
(Allowed only in display math mode.) The current list is converted to a displayed
formula and saved away in a safe place; T}?X now switches to non-display math mode.
The subsequent {inlist) will become an equation number, placed at the right of the
display as cxplained in Chapter 19.
® \x Extension to TjEX. \
The control sequence \x allows special actions that might exist in some versions of TiEX.
(Such extensions arc obtained by loading a scparately compiled module with the TiX
system; individual users might have their own spccial extension modules.)

Append a centered or top-adjusted box.

\topmark

\botmark
(Allowed only in \output routines.) TjiX inserts the specified mark text into its input;
see Chapter 23.

Insert the text of. a stored mark.

136 Chapter 26

® \halign(spec){(alignment preamble)\cr{alignment entries)> Append alignment.
This is allowed only in display math mode, and only if there arc no formulas being
displayed outside of this alignment and no \egno. The behavior is identical to \ha1 ign
when it appears in vertical mode, except that \dispskip glue is appended above and
below the resulting vertical list,

®
\cr
The symbols ® and \cr are detected deep inside TEX's scanning mechanism when they
occur at the proper nesting level of braces, because they cause TEX to start scanning
a “(v;)" as explained in Chapter 22. Therefore if these symbols appcar in math mode,
they are ignored, and you get the error message “There’'s no \hal ign or \valign
going on.”

° <\ENDV> “Missing $ inserted.”
\par

An \ENDV instruction is inserted automatically by TEX at the end of each “(u;)" list of
an alignment format. (You can't actually give this control scquence yourself; it only
occurs implicitly.) A \par token occurs either implicitly, as a result of a blank line in
the input, or explicitly. Neither case should happen in math mode, so TEX issues an
error message and inserts a $ in an attempt to kecp going.

° Spurious alignment delimiter.

\gdef
The specificd control scquence is defined as described in Chapter 20. TEX remains in
math mode, and the current list is not affected. You are not, altowed to redefine certain
control sequences like \baselineskip and \:, since TEX relics on these to control its
operations at critical points. Definitions with \def disappear at the cnd of the current
formula or subformula; definitions with \gdet do not. It is best not to apply both \def?
and \gdef to the same control sequence in different parts of a manuscript.

e (dimenparam){dimen) Set a dimension parameter.
Here (dimcnparam) stands for oneof the control sequences \hsize, \vsize, \maxdepth,
\parindont, \topbaseline. The corrcsponding TiX parameter is set equal to the
specified dimension; TEX remains in math mode, and the current list is not affected.
This assignment is “global,” it holds even after the end of the current formula. The
initial dcfault values of these five parameters are (324,504, 3,0, 10) points, respectively.

e {glucparam){glue) Define a glue parameter.
Here (glueparam) stands for one of the control sequences \lineskip, \baselineskip,
\parskip, \dispskip, \diepaskip, \dispbekip, \topskip, \botskip, \tabskip.
The corresponding TEX parameter is sct cqual to the specified glue; TEX remains in

° < \det > {controlseq){parameter text){(result text)} Define a control sequence.

Summary of math mode 137

math mode, and the current list is not affected. This assignment is “local,” it will be
forgotten at the end of the current formula or subformula; so this construction,is of
very limited utility in math mode. The initial value for all these typcs of glue is zero.

e \chcode{number;}«{numberz) Define a character interpretation.
The character whose seven-bit code is {(number;) is subsequently treated as being of
category (numbers), where the category codes are described in Chapter 7. This definition
will be local to the current formula or subformula. X remains in math mode, and the
current list is not affected.

® \chpar(number;)«+(numberz) Define an integer parameter.
TX's internal parameter {numbcr,) is sct equal to (numberg). See Chapter 25 for a
table of the internal parameters. This definition will be local to the current formula or
subformula, and any new settings of “binopbreak” and “relbreak” will disappear before
TEX uscs them in the present formula, so they are best defined outside of math mode.
TEX remains in math mode, and the current list is not affected.

e \output{{vlist)}(optional spacc) Set the output routine.
The specificd (vlist) is stored for later usc when pages are output (sce Chapter 23). TEX
recmains in math mode, and the current list is not affected. This assignment is “global,”
it will hold even after the end of the current formula.

e \getcount{digit){optional sign){(number} Set a specified counter,
One of ten counters, indicated by the specified digit, is set to the specified integer value
(see Chapter 23). This assignment is “global,” it is not rescinded at the end of the
formula. T}X remains in math mode, and the current list is not aflected.

e \advcount{digit) Advance the specified counter.
The magnitude of the specified counter is increased by 1. TFX remains in math mode,
and the current list is not affected.

e \count(digit) Insert the specified counter.
The specified counter is converted to characters (sce Chapter 23) and inserted into the
input; TEX will read it in math mode.

\ifeven(digit)) . N
¢ <\1f(charl)(charg)>{(tme text)}\else{(falsc text)y Conditional text.

TEX reads cither the true text or the false text, see Chapter 23.

e \ddt Print debugging data.
If bit 4 of the \trace parameter is 1, TEX prints out its current activities (the lists and
pages it is currently building). Furthermore if bit “40 of the \trace parameter is 1,
TEX will stop, giving you the chance to insert text on-line. TiEX remains in math mode,
and the current list is not affected.

138 Chapter 26

e (anything eclse) “! You can't do that in math mode.”
If anything not listed above appears in math mode, you get an error message. TEX
ignores the token of input that broke the rules, and remains in math mode; the current
list is not affected.

<27> Recovery from errors

OK, everything you need to know about TiX has been explained—unless you
happen to be fallible,

If you don't plan to make any errors, don't bother to read this chapter.
Otherwise you might find it helpful to make use of some of the ways TEX tries
to pinpoint bugs in your manuscript.

In the trial runs you did when reading Chapter B, you learned the general
form of error messages, and you also learned the various ways you can respond to
TEX's complaints. With practice, you will be able to correct most errors “on line,”
as soon as TEX has detected them, by inserting and deleting a few things. On
the other hand, some errors are more devastating than others; one error might
cause some other perfectly valid construction to seem wrong. Furthermore, TEX
doesn't always diagnose your errars correctly, since it is a rather simple-minded
computer program that docsn't readily understand what you have in mind. (In
other words, let's face it: TEX can get hopelessly confused.)

By looking at the input context that follows an error message, you can often
tell what TEX will read next if you proceed by hitting (carriage-return). For
example, look again at the error message discussed at the end of Chapter 8; it
shows that TEX is about to read “STORY", then (since the <argumentd> will be
finished) will come “\hskip Opt" and so on. Here's another example:

! Missing { inserted.
<to be read again>
A
() \hjust A
nother example.

In Wthis case TiX has read the “A” and discovered that a “{" was missing. The
missing lcft brace has been inserted and the “A" will be read again, followed by
“nother example.” If you understand what TgX has read and is going to read

Recovery from errors 139

next, you will be able to make good use of the insertion and deletion options
when error messages appear on your terminal, because you'll be able to make
corrections before an error propagates.

Here is a complete list of the messages you might get from TEX, presented
in alphabctic order for reference purposes. Each message is followed by a brief
explanation of the problem, from TjX's viewpoint, and of any remedial action
you might want to take. (See also Appendix I.)

! A box specification was supposed to be here.

TEX was expecting to sce a (box) now, based on what it had rccently seen (e.g.,
“Nraise” or “\save" or “\leaders"), but what it now secs is not the beginning
of a (box). (Scc Chapter 24 or 25 or 28 for the definition of a (box).) Proceed,
and T:X will forget whatever led it to expect a (box).

! Ambiguous; you need another { and }.

You seem to be using \over or \atop or \above or \comb more than once in
the samc formula or subformula. Proceed, and the formula will appear as if the
current \over {or whatever) weren't there.

! All mixed up, can’t continue.
TEX is quitting, because it is confused about an alignment that has gone awry.

! Argument of (control scquence} can’t begin with).
The first character of some argument to the specified macro is }. Proceed, and
this > will be ignored.

! Bad font link for large delimiter (numbcr).

TEX is trying to make a variable-size delimiter, but either you gave it the wrong

code number or the font information of the current ex font is messed up. Maybe

the wrong ex font has been sclected. Proceed, and the delimiter will be changed
“" (blank).

! Blank space should follow file name.

TX usually continues to read a file name until sceing a blank space, 5o it may
have incorporated part of your mput text into the file name. Proceed and you
might be lucky.

! Display math should end with $$.

TX got to a $ in display math mode, and it wasn't followed by another $. If you
simply have typed a single dollar sign instead of a double one, proceed and TEX
will happily pretend there were two. Otherwise you're probably in decp trouble—

140 - Chapter 27

but don't give up yet. (Perhaps you didn't want TiX to get into display math
mode at all; are you doing an alignment with “3” in some format, where the
entry to be aligned is empty, contrary to the advice in Chapter 227)

! Double subscript.

You can't apply 4 twice to the same thing. Proceed, and the first subscript will
be ignored.

! Double superscript.

You can't apply T twice to the samc thing. Proceed, and the first superscript will
be ignored.

! \else required here.

TEX is processing conditional code initiated by \if or \ifeven, and the condi-
tion was falsc, so the (truc text) has just been skipped over. But the next token
was not \else; perhaps the (true text) contains improper grouping of braces.
Proceed, and T:X will resume rcading the input.

(\end occurred on level {number)).
This message may appear on your terminal just before TEX signs off; it warns
You that the statcd number of {'s still is waiting to be matched.

! Extra (something).

There are scveral messages telling you that your input text contains something
“extra”; for cxample, if your input contains a math formula like “$x>+y$”, TEX
will say that you have an extra “}". Proceed, and TX will ignore what it claims
is extra. (If you forget to type “\cr” in an alignment, you may get the message
“Extra ©", meaning that there arc more tabs than specificd in the preamble.
Your alignment will probably be messed up and overfull boxes will appear; it's
too bad.)

| First use of font must define it.

A font code has appeared for the first time in your manuscript, and it wasn't
immediately followed by “=" or “«". (This is & rather scrious error—always make
it a habit to declare your fonts early in your manuscript.) Insert “=(font file

name)(space)” and TEX will be able to continue.

! \halign in math mode must be proceded and followed by $%.
TEX has just scanned the “}" that completes an \hal ign in display math mode.
You get this error if @ nonempty formula preceded the \hal ign or if the current
item of input isn't “$”. Proceed, and TEX will continue in display math mode.
(Strange things may happen.)

Recovery from errors 141

! Illegal font code. _

You should always refer to fonts as suggested in Chapter 4; for exampley you
shouldn’t type crazy things like “\:\hjust" unless you have redefined the con-
trol sequence \hjust. Insert the font code you intended, by first typing “i".

| Illegal parameter number in definition of (controlseq).

The result text of the stated definition contains an appearance of # that isn't
followed by # or by the number of a parameter in the paramcter text. Proceed,
and TX will assume that you mcant to type “#¢".

| Illegal unit of measure (pt inserted).

TEX is scanning a (dimen) (sec Chapter 10), but the (number) isn't followed by
any of the two-letter codes TEX knows. Proceed, and TiX will assume that “pt”
was there.

! Improper code.
You arc attempting to use \chcode or \chpar with an improper (numberl)
The operation is aborted, but you may proceed.

| Input page ended while scanning def of {controlscq).

The (parameter text) or the (resull text) of a \def, or the {mark list) of a \mark,
or the (vlist) of an \output, has extended beyond the current file page of the
input file. This probably means that you forgot a “}" in somc faraway part of
the input manuscript, so it's probably a disaster. Insert a right brace if you want,
and procecd if you dare.

! Input page ended while scanning use of (controlscq).

This mcssage has been preceded by a “Runaway argument?” message that
shows what TEX thinks is the beginning of an argument to a defined control
sequence. For somc rcason, a filc page in the input file has ended before the
text of that argument has ended. This probably is a scrious crror, because it has
presumably gone undetected for a while. You can try to inscrt something into
the input that will terminate the runaway argument, but you most likely should
start ovcr, after fixing the argument so that it terminates where it should. (You
probably left out a “}".)

| Large delimiter {number) should be in mathex font.

You are specifying a (delim) by a 8-bit code, but you should have specified either
¢z = 0 or ¢; => '600. Proceed, and the delimiter will be selected using ¢; only.
(See Chapter 18 for the meaning of ¢; and ¢3.)

142 . Chapter 27

! Italic correction must follow an explicit character.

The control sequence \/ is supposed to follow a character from some font, but
your input tells TiEX to apply an “italic correction” to something else. Perhaps
You are using a defined control sequence that slants one of iis arguments (e.g.,
\algbegin in Appendix E), where the argument ends with a math formula
instead of a word. Proceed.

! Limit switch must follow math operator. .
If the control sequence \limitswitch doesn't follow an Op box, it doesn't
accomplish anything. Proceed.

! Lookup failed on file ({filename).

TEX can't find the file you indicated. Type “i” and insert the correct file name
(followed by a blank space and (carriage-return)). But be carcful: You get only
one more chance to get the file name right, otherwise TEX will dccide not to input
any file just now,

! Missing (something) inserted.

This message can arise in lots of ways and it can name a varicty of things that
TEX sometimes thinks are missing, For example, if you type

\left (x+{\right)

in math mode, TEX thinks (correctly) that there's a missing “}". (See Chapter
26.) In gencral, when you get this message, TEX has alrcady inserted what it
says was missing—don't insert another one. If TsX has guessed correctly, just
proceed. Otherwise, it may be fun to try getting TjX back into synch; you might
get the message “Missing } inserted” followed by one that says “Too many
}“s", indicating a certain lack of logic on TiX's part.

! Missing digit (O to 9), 0 inserted.
TEX was expecting to sec a decimal digit following \box or \save, but it isn't
there. Proceed; TiX has already inserted a “0".

! OK.
This isn’t an error message. TEX is stopping because you asked it to (\ddt with
\trace bit "40 set).

! dnly one # allowed per tab.
A (format) in an alignment preamble must have exactly one #, but you seem to
have typed more than one. Proceed, and the extra # will be ignored.

Rceovery Jrom ervors 143

| Only single characters can be accented in horizontal mode.
An (accent) has not been followed by a proper (accentec). Proceed, and the
(accent) will be ignored.

! \output routine didn't use \page.
A page was asscmbled for output, but the \output routine didn't make use of
it, so it is lost forever. Proceed.

| Parameters must be numbered consecutively.

You must say #1, #2, etc., in order, when designating parameters in the (parameter
text) of a macro definition. When you get this message, TiZX has already inserted
the correct parameter number, so you may want to delete an incorrect one before
proceeding.

Overfull box,

This is an information message, not an error message (i.e., T}ZX doesn't stop).
The box whose contents are partially displayed is “overfull” because it doesn't
have enough glue shrinkage to get down to the required size. Thus the box
contents are too wide or too high by the specified amount; in your output you
will probably sce this box sticking out somewhere or overlapping another one,
unless the cxcess is very small. Overfull boxes can arise from a variety of reasons,
notably when there is no decent way to break the lines of certain paragraphs, or
when a displaycd cquation is too wide to fit on a single line. You may want to
settle for badly broken lines in a paragraph, by increasing the value of \jpar as
discussed in Chapter 14; or you might be able to help by inscriing discretionary
hyphens, especially if there is a word that TiX docsn't try to hyphenate (e.g.,
“Inter\-change" in the first line of Appendix F). But in a high-quality job an
overfull box usually mcans that the author should rewrite the text, eliminating
the problem entirely.

Runaway argument?

This mcssage is followed by thc: tokens of a macro argument that didn't end
where you wanted it to. (See “! Input page ended while scanning use
of ..." above.) ’

! TEX capacity exceeded, sorry [(size)=(number)] .

This is a bad one. Somchow you have stretched TiX beyond its finite limits. The
thing that overflowed is indicated in brackets, together with its numerical value
in the TiX implementation you are using. The follo