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An intuitionistic theory of types

Per Martin-Lof
Department of Mathematics, University of Stockholm

The theory of types with which we shall be concerned is intended to be a full scale sys-
tem for formalizing intuitionistic mathematics as developed, for example, in the book by
Bishop 1967. The language of the theory is richer than the language of first order predi-
cate logic. This makes it possible to strengthen the axioms for existence and disjunction.
In the case of existence, the possibility of strengthening the usual elimination rule seems
first to have been indicated by Howard 1969, whose proposed axioms are special cases
of the existential elimination rule of the present theory. Furthermore, there is a reflec-
tion principle which links the generation of objects and types and plays somewhat the
same role for the present theory as does the replacement axiom for Zermelo-Fraenkel
set theory.

An earlier, not yet conclusive, attempt at formulating a theory of this kind was made
by Scott 1970. Also related, although less closely, are the type and logic free theories
of constructions of Kreisel 1962 and 1965 and Goodman 1970.

In its first version, the present theory was based on the strongly impredicative axiom
that there is a type of all types whatsoever, which is at the same time a type and an object
of that type. This axiom had to be abandoned, however, after it was shown to lead to
a contradiction by Jean Yves Girard. I am very grateful to him for showing me his
paradox. The change that it necessitated is so drastic that my theory no longer contains
intuitionistic simple type theory as it originally did. Instead, its proof theoretic strength
should be close to that of predicative analysis.

1. INFORMAL EXPLANATIONS OF THE BASIC CONCEPTS.

1.1. Mathematical objects and their types. We shall think of mathematical objects
or constructions. Every mathematical object is of a certain kind or type. Better, a
mathematical object is always given together with its type, that is, it is not just an object,
it is an object of a certain type. This may be regarded as a simpler and at the same
time more general formulation of Russell's 1903 doctrine of types, according to which
a type is the range of significance of a prepositional function, because in the theory
that I am about to describe every prepositional function will indeed have a type as its
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domain. A type is defined by prescribing what we have to do in order to construct an
object of that type. This is almost verbatim the definition of the notion of set given by
Bishop 1967. Put differently, a type is well defined if we understand (or grasp to use a
word favoured by Kreisel 1970) what it means to be an object of that type. Thus, for
instance, N —> N is a type not because we know particular number theoretic functions
like the primitive recursive ones but because we think we understand the notion of
number theoretic function in general. Note that it is required neither that we should
be able to generate somehow all objects of a given type nor that we should so to say
know them all individually. It is only a question of understanding what it means to be
an arbitrary object of the type in question. I shall use the notation

to express that

a is an object of type A.

1.2. Propositions and proofs. A proposition is defined by prescribing how we are
allowed to prove it. For example

971 is a non prime number

is the proposition which we prove by exhibiting two natural numbers greater than one
and a computation which shows that their product equals 971. In the present context,
however, it will not be necessary to introduce the notion of proposition as a separate
notion because we can represent each proposition by a certain type, namely, the type
of proofs of that proposition. That the proofs of a proposition must form a type is
inherent already in the intuitionistic explanations of the logical operations when taken
together with the doctrine of types. For example, the intuitionistic notion of implication
is explained by saying that a proof of A D B is a function which to an arbitrary proof
of A assigns a proof of B. And, if every function is to have a type as its domain, this
requires that the proofs of the proposition A must form a type. To avoid an unwieldy
mode of expression and notation, I shall sometimes simply identify a proposition with
the type that represents it. When a type A represents a proposition,

may be read alternatively

a is a proof of the proposition A.

On the formal level, the analogy between formulae and types was discovered by
Curry and Feys 1958 and further extended by Howard 1969 to whom I am indebted for
explaining it to me. In what follows, I shall make use of it in much the same way as
Scott 1970.
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1.3. Cartesian product of a family of types. Suppose now that A is a type and that
B is a function, rule or method which to an arbitrary object a of type A assigns a type
B(a). Then the cartesian product

is a type, namely the type of functions which take an arbitrary object a of type A into
an object of type B(a). Clearly, we may apply an object b of type (Hx € A)B(x) to an
object of type A, thereby getting an object

b(a)

of type B(a). The notation b(a\,... ,an) will be preferred to b(a\)... (an). When
B(a) represents a proposition for every object a of type A, i represents
the universal proposition

A proof of is a function which to an arbitrary object a of type A assigns
a proof of 6(a).

Functions may be introduced by explicit definition. That is, if we, starting from a
variable x that denotes an arbitrary object of type A, build up a term b[x] that denotes
an object of type B(x), then we may define a function denoted of type

by means of the schema

Here b[a] denotes the result of substituting the object a of type A for the variable x in
the term b [x].

If B(a) is defined to be one and the same type B for every object a of type A, then
) will be abbreviated

It is the type of functions from A to B. Parentheses are associated to the right so that
abbreviates , . When A and B both

represent propositions, represents the implication

A proof o f , is a function which takes an arbitrary proof of A into a proof of B.
1.4. Disjoint union of a family of types. Given a type A and a function B which to

an object a of type A assigns a type B(a), we may form the disjoint union

which is the type of pairs (a, b) where a and b are objects of type A and B(a), respec-
tively. When B(a) represents a proposition for every object a of type , i
represents the existential proposition

(3^6A)B(x)



130 P. Martin-Lof

which we prove by exhibiting a pair (a, b) where a is an object of type A and b a proof
of the proposition B(a).

Let C be a function which to an arbitrary object of type assigns a
type. Given a function d of type we may then introduce
a function of type whose value for the argument c will be
denoted E(c, d) by the schema

In particular, we can introduce the left and right projections p and q of types
and , respectively, by putting

A third function of > is to represent

the type of all objects a of type A such that B(a),

because, from the intuitionistic point of view, to give an object a of type A such that
B(a) is to give a together with a proof b of the proposition B(a). This interpretation
of the notion of such that is implicitly used by Bishop 1967 and discussed by Kreisel
1968. However, its explicit formulation requires us to consider proofs as mathematical
objects. For example, the type R of real numbers is defined as

Thus, a real number is a pair (a, b) where a is a sequence of rational numbers and b is
a proof that a satisfies the Cauchy condition.

An example which shows the necessity of treating proofs as mathematical objects
is afforded by the inverse function which is not of type R -^ R but of type (
r^_ ,' ~ ~;, because the definition of the inverse c"1 of a non zero real number c de-
pends effectively on the proof that c ^ 0. A similar phenomenon occurs in the intuition-
istic theory of ordinals of the second number class (see Brouwer 1918) where the sub-
traction function is not of type but of type ,
because the definition of the difference b — a of two ordinals a and b depends effectively
on the proof that

In the special case when B(a) is defined to be one and the same type B for every
object a of type , is abbreviated

It is the cartesian product of the two types A and B. If A and B both represent propo-
sitions, then A x B represents their conjunction
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1.5. Disjoint union of two types. If A and B are types, so is the disjoint union

which is the type of objects of the form i (a) with a of type A or / (£>) with b of type B.
Here i and j denote the canonical injections. When A and B both represent proposi-
tions, A + B represents their disjunction

Let C be a function which to an arbitrary object of type A + B assigns a type, and
suppose that d and e are functions of types > and i ,
respectively. Then we may define a function of type i ) whose value for
the argument c will be denoted D(c, d, e) by the schema

1.6. Finite types. For each non-negative integer n we introduce a type Nn with
precisely the n objects 1, 2 , . . . , « . Actually, it would suffice to introduce NQ and N\
because, for n greater than one, we can define Nn to be the union of N\ with itself n
times.

If C is a function which to an arbitrary object of type Nn assigns a type and c i , . . . ,
cn are objects of types C( l ) , . . . , C(«), respectively, then we may define a function of
type whose value for the argument c will be denoted Rn(c, c\,..., cn)
by the schema

In particular, NQ is the empty type which also represents the logical constant/a/se/zood
-L, and the function ' " of type is the empty function. Similarly,
the one element type N\ is used to represent the logical constant truth T.

1.7. Natural numbers. N is a type, namely, the type of natural numbers. 0 is an
object of type N and, if n is an object of type N, so is its successor s(n). These are the
first two Peano axioms.

Let C be a function which to an arbitrary natural number assigns a type. Then, given
an object d of type C(0) and a function e of type j, we may
introduce a function of type whose value for the argument n will be
denoted R(n, d, e) by the recursion schema
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If C(n) represents a proposition for every natural number n, then (Xx)R(x, d, e) is the
proof of the universal proposition > which we get by applying the principle
of mathematical induction to the proof d of C(0) and the proof e of i »

The type N is just the prime example of a type introduced by an ordinary induc-
tive definition. However, it seems preferable to treat this special case rather than to
give the necessarily much more complicated general formulation which would include

and N as special cases. See Martin-Lof 1971 for a general
formulation of inductive definitions in the language of first order predicate logic.

1.8. Reflection principle. The abstractions described so far still do not allow us
to define enough types and type valued functions. For example, we want to be able to
define equality between natural numbers by the schema

i

which will give us in particular the third and fourth Peano axioms. This can clearly be
done by recursion if only the propositions alias types J_ and T were objects of some
type V. Also, we want to be able to define transfinite types like i where

Again, this offers no difficulty if only there were a type V such that N is an object of
type V and A -> B is an object of type V as soon as A and B are objects of type V.

Guided by these heuristic considerations, we introduce a type V which will be called
a universe and whose objects are to be types, together with the reflection principle
which roughly speaking says that whatever we are used to doing with types can be done
inside the universe V. More precisely, this means that V is closed under the following
inductive clauses. NO, N\, . . . and N are objects of type V. If A and B are objects
of type V, then so is A + B. If A is an object of type V and B is a function which
to an arbitrary object of type A assigns an object of type V, then and

are objects of type V. Note, however, that the reflection principle does
not justify the axiom that V is an object of type V which Girard 1972 has shown to be
contradictory, because then V would so to say have to have been there already before
we introduced it.

It is not natural although possible to add the principle of (transfinite) induction over
V, expressing the idea that V is the least type which is closed with respect to the above
inductive clauses, because we want to keep our universe V open so as to be free to throw
new types into it or require it to be closed with respect to new type forming operations.
For example, we may want to introduce the type O of ordinals of the second number
class or the operation which to a type A assigns the type W(A) of well founded trees
over A (see Tait 1968, Scott 1970 and Howard 1969).
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Borrowing terminology from category theory, a type which is an object of V is said
to be small whereas V itself and all types which are derived from it are large. Thus the
universe V is the type of small types. With this distinction between small and large,
the present theory, despite its limited proof theoretical strength, is adequate for the
formulation of the basic notions and constructions of category theory. However, it does
not legitimatize the construction of the category of all categories whatsoever which in
view of Girard's paradox seems highly dubious.

The use of the reflection principle in the present theory, on the one hand, to over-
come the unnatural limitation to finite types and, on the other hand, to make possible
the formalization of category theory should be compared to the use of the quite different
reflection principle in the equally different language of set theory for the same purposes.
The idea of using the set theoretical reflection principle for the formalization of category
theory is due to Kreisel 1965 and has been elaborated by Feferman 1969.

1.9. Girard's paradox. Suppose that we think of V not as the type of small types
but as the type of all types whatsoever. Then, being a type, namely, the type of types, V
is itself an object of type V, in short,

and a type is the same as an object of type V. The following paradox which is a modifi-
cation of the one discovered by Girard 1972 (which, in turn, resembles the Burali-Forti
paradox) shows that the idea of the type of all types whatsoever is inconsistent.

Define an ordering without infinite descending chains (Girard 1972 introduces in-
stead what he calls torsion free orderings) to be a type A together with a binary relation
< on A such that the propositions

and

which express that < is transitive and free from infinite descending chains, both hold.
Note that an ordering without descending chains is necessarily irreflexive, because, if

then is an infinite descending chain and we get a
contradiction.

Remembering the representation of propositions as types and the interpretation of
the notion of such that,

is the type of all orderings without infinite descending chains. On U we define a binary
relation by putting
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that is, one ordering of the kind that we are considering is defined to be less than another
if there exists an order preserving map from the first to the second and an element of the
second ordering which dominates the range of this map.

The ordering is transitive. Suppose namely that

that is, that there are order preserving maps and and elements
b e B and c e C that dominate their respective ranges. Then the composition of / and g
is an order preserving map from A to C whose range is dominated by c so that

We have now constructed a proof ') •
The ordering <{/ has no infinite descending chains. Suppose namely that

and let /„ be the order preserving function that maps An+\ into An and an the object of
type An that dominates its range. Then

so that we get an infinite descending chain in AQ contrary to the assumption that i is
an ordering without such chains. We have now constructed a proof

From i and I we can
conclude

The next step is to show that this is a maximal element of U with respect to the ordering
that is, that

for all

To this end, we let / be the function which takes an object a of type A into the segment
of A determined by a, that is,

where, remembering the interpretation of such that,



An intuitionistic theory of types 135

<fl is the restriction of < to A and pa and qa are the obvious proofs that is transitive
and free from infinite descending chains. We have to show that / is order preserving
and that its range has a dominating element. Suppose Then

because the injection of Aa in to A/, is order preserving and its range is dominated by
the pair of type A\, which consists of a and the proof of As the element of type
U which is to dominate the range of / we can take itself. Indeed, if a is
an arbitrary object of type A, then

because the injection of Aa into A is order preserving and its range is dominated by a.
We have now shown that (U, <u, pu, qu) is a maximal element of U with respect

to the ordering <y. But (U, <u, Pu, qu) is itself an object of type U and hence

This, however, is impossible, because we have shown <{/ to be an ordering without
infinite descending chains and, as remarked above, such an ordering is necessarily ir-
reflexive.

2. FORMALIZATION OF AN INTUITIONISTIC THEORY OF TYPES.

2.1. Notational conventions. There is no need to give a list of all the formal sym-
bols. Suffice it to say that it should contain all the symbols that are used in the following
except the square brackets which will be reserved for the substitution operation. Thus,
b[x] denotes an expression in which there may be some free occurrences of the variable
x, and b[a] denotes the result of substituting the expression a for all free occurrences
of the variable x in b[x]. Free and bound variables are defined by stipulating that all
free occurrences of x in b[x] become bound in and, similarly, that all free
occurrences of x in B[x] become bound in and

By a simultaneous induction, we shall generate certain symbolic expressions called
types and, for every type, certain other expressions called the terms of that type. The
rules of type and term formation are such that, when the formal symbols are given their
abstract interpretation as described in the previous section, it becomes clear that a type
A denotes an abstract type and that a term a of type A denotes an abstract object of the
type denoted by A. I shall use the notation a 6 A to express that a is a term of type A.

There will be variables each of which has a unique type associated with it, and a
term or type will always depend on a certain finite number of variables. The notion of
dependence is defined inductively by stipulating that a term or type depends on all its
free variables as well as on all variables on which the types of its free variables depend.
Consequently, a term or type is closed if and only if it depends on no variables at all.
There will be variable restrictions prohibiting us to bind a variable in a term or type if
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there is a free variable in the said term or type whose type depends on the variable in
question. These variable restrictions contain as special cases those stated by Gentzen
for his system of natural deduction for first order logic. To avoid explicit mention of
the variable restrictions, it will be tacitly assumed that a term which is denoted by

contains no free variable distinct from whose type depends
on xm, m = 1 , . . . , n. The same notational convention will be used for types. Thus, for
instance, when saying that b[x] is a term of type B[x], it is tacitly assumed that there is
no free variable in b[x] or B[x] whose type depends on x.

2.2. Types.
2.2.1. If P is an «-ary type constant with arguments of types AI , . . . , An[x\,...,

and a i , . . . ,an are terms of types/.. , ' . . ' . ~ . respectively, then
P(a\,..., an~) is a type. Here, for m = 1 , . . . , n, the variable xm is of the type

which must not depend on any other variables than the explicitly
exhibited x\, ...,xm-\. The type constants correspond to the predicate constants in
ordinary first order predicate logic.

2.2.2. If x is a variable of type A and B[x] is a type, then is a type.
When B does not contain x free, is abbreviated A —> B.

2.2.3. If x is a variable of type A and B[x] is a type, then ' | is a type.
When B does not contain x free, is abbreviated A x B.

2.2.4. If A and B are types, then A + B is a type.
2.2.5. V is a type.
2.2.6. A term of type V is a small type. This is the clause which links the generation

of the types with the generation of the terms.
A type which is not small is large. Thus, for instance, V is a large type. A type is

large if and only if it contains an occurrence of V or a type constant P, and hence it can
be mechanically decided whether a type is small or large.

2.3. Terms. Each rule of term formation will be classified a la Gentzen 1934 as an
introduction or elimination rule associated with one of the basic types or type forming
operations.

2.3.1. Variables. If* is a variable of type A, then* is a term of type A. We are not
allowed to introduce a variable x of type A unless x is distinct from all the variables on
which the type A depends. Also, as remarked earlier, the type of a free variable must
always be uniquely associated with the variable in question. We shall not care about the
naming of bound variables.

2.3.2. Constants. If a is an object constant of type A, then a is a term of type A.
The type of an object constant must always be closed. The object constants correspond,
on the one hand, to the individual constants and function symbols in ordinary first order
predicate logic and, on the other hand, to the axioms of a first order theory.

2.3.3. n-introduction or A.-abstraction. If x is a variable of type A and b[x] is a
term of type B[x], then (X.x)b[x] is a term of type , _ ,.

2.3.4. It-elimination or application. If a and b are terms of types A and
', respectively, then b(d) is a term of type B[a].

2.3.5. E-introduction or pairing. Let x be a variable of type A and B[x] a type.
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Then, if a and b are terms of types A and B[a], respectively, (a, b) is a term of type

2.3.6. £ -elimination. Let x, y and z be variables of type A, Z?[;t] and
, respectively, and let C[z] be a type. Then, if c and d [ x , y] are terms of types

| and C[(x, y)], respectively, 1 is a term of type C[c].
2.3.7. +-introduction or injection. If a is a term of type A, then i(a) is a term of

type A + B. Similarly, if b is a term of type B, then j (b) is a term of type A + B.
2.3.8. +-elimination or definition by cases. Let x, y and z be variables of types A,

B and A + B, respectively, and let C[z] be a type. Then, if c, d[x] and e[j] are terms
of types A + B, C[i(x)] and C[j (y)], respectively, ) is a term
of type C[c].

2.3.9. Nn-introduction. 1 , . . . , n are terms of type Nn.
2.3.10. ^-elimination. Let z be a variable of type Nn and C[z] a type. Then, if c,

c\, ... , cn are terms of types Nn, C [ l ] , . . . , C[n], respectively, Rn(c, c\,..., cn) is a
term of type C[c].

2.3.11. AMntroduction or Peano's first and second axioms. 0 is a term of type N. If
a is a term of type N, so is s(a). A term of type N which has the form s ( s ( . . .s(0)...))
is called a numeral.

2.3.12. A'-elimination or recursion. Let* and y be variables of types N and C[x],
respectively. Then, if c, d and e[x, y] are terms of types N, C[0] and C[s(x)], respec-
tively, i is a term of type C[c].

2.3.13. V-introduction or the reflection principle. NO, N\, ... and N are terms of
type V. If A and B are terms of type V, then so is A + fi. If A and B[x] are terms of
type V, x being a variable of type A, then and are terms
of type V. NQ and N\ are alternatively denoted by _L and T, respectively.

2.3.14. Type conversion. This is a structural rule, that is, a rule which is to be
considered neither as an introduction rule nor as an elimination rule. If a is a term of
type A which converts to a type B, then a is a term of type B. It remains for us to define
the notion of conversion. Before doing this, however, it will be convenient to represent
the rules of term formation by schemata similar to those used by Gentzen 1934 in his
system of natural deduction for first order predicate logic.

Fl-introduction

n-elimination

£ -introduction
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2.4. Contraction, reduction and conversion. We shall be concerned with contrac-
tion, reduction and conversion of terms as well as types. However, in order to show
that the terms and types are closed under reduction, we need a certain combinatorial
property, the so-called Church-Rosser property, which will be proved for a class of in
general meaningless formal expressions which is wide enough to include both the terms
and the types.

2.4.1. Definition of formal expressions.
2.4.1.1. If a\, ...,an are expressions and P is an n-ary type constant, then

P(ai,..., an~) is an expression.

E-elimination

-(--introduction

-{--elimination

Nn -introduction

Nn -elimination

//-introduction

./V-elimination

V -introduction

Type conversion
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2.4.1.2. If x is a variable and A and B[x] are expressions, then (Ylx e A)B[x] and
(Ex e A)B[x] are expressions.

2.4.1.3. If A and B are expressions, then so is A + B.
2.4.1.4. TVo, N I , ..., N and V are expressions.
2.4.1.5. Variables and object constants are expressions.
2.4.1.6. If b[x] is an expression, then so is
2.4.1.7. If a and b are expressions, then so is b(a).
2.4.1.8. If a and b are expressions, then so is (a, b).
2.4.1.9. If c and d [ x , y] are expressions, then so is
2.4.1.10. If a and b are expressions, then so are / (a) and ; (b).
2.4.1.11. If c, d[x] and e[y] are expressions, then so is
2.4.1.12. ! , . . . , « are expressions.
2.4.1.13. If c, c i , . . . , cn are expressions, then so is ,
2.4.1.14. 0 is an expression, and, if a is an expression, then so is s(a).
2.4.1.15. If c, d and e [ x , y] are expressions, then so is
2.4.2. Rules of contraction.

contr

contr

contr

contr

contr

contr

contr

contr

An expression which has the form of the left hand member of one of the rules of
contraction is called a redex and the corresponding right hand member is its contractum.
An expression a reduces to an expression b, abbreviated a red b, if b can be obtained
from a by repeated contractions of parts of the expression a, and an expression is ir-
reducible or normal if it cannot be further reduced. Finally, an expression a is said to
convert into an expression b, abbreviated a conv b, if there is an expression c such that
both a red c and b red c.

2.4.3. Church-Rosser property. If a red b and a red c, then there is an expression
d such that b red d and c red d.

The proof given below is an adaptation of a proof for the type free combinator
calculus shown to me by William Tait. The idea is to introduce a suitable measure of the
length of the sequence of contractions which reduces an expression a to an expression b.
We shall say that a reduces in one step and write a redi b if b is obtained by contracting
some, possibly all or none, of the redexes in a, starting from within and proceeding
outwards. (Of course, even if we contract all redexes that occur in a certain expression,
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we do not necessarily obtain a normal one, because new redexes may arise when the
old ones are contracted.) Reduction in n steps is defined inductively by putting a redo
a and letting a redrt+i c mean that a redn b and b redi c for some b. Clearly, a red b
if and only if a redn b for some n. (Indeed, n can be taken to be the total number of
contractions that are carried out when reducing a to b.)

2.4.3.1. Lemma. If a red\ c andb[x] red\ d[x] then b[a] red\ d[c].
This is obvious from the definition of one step reduction.
2.4.3.2. Lemma. If a red\ b and a red\ c, then there is an expression d such that b

red\ d and c red\ d.
The proof is by induction on the construction of the expression a. All cases in which

a does not have the form of a redex are handled immediately by means of the induction
hypothesis. Equally trivial are the cases when a is a redex which is contracted neither
in b nor in c. There remain the cases when a is a redex which is contracted either in one
of b and c, say c, or in both.

2.4.3.2.1. a has the form I. Then b has the form i or
b2[b\] and c has the form C2[ci] where

By induction hypothesis, we can find d\ and di[x] such that

But then (kx)b2[x](b\) redi d2[d\\ by the definition of one step reduction and b2[b\]
and C2[ci] redi ^2^1] by the previous lemma so that d can be taken to be d2[d\].

2.4.3.2.2. a has the form j I. Then b has the form
or b^[b\, b2\ and c has the form cafci , 02] where

i

By induction hypothesis, we can find d\, di and d$[x, y] such that

But then ) redi di,[d\, d^\ by the definition of one step re-
duction and b$[bi, b^} and 03[ci, ci} redi dj,[d\, di\ by the previous lemma so that d
can be taken to be d^[d\, d-i\.

2.4.3.2.3. a has the form Then b has the form
or bi\b\\ and c has the form ci[ci] where

a\ redi b\, ai[x] redi bi[x], a^[y] redi b^[y],
a\ redi c\, a2[x] redi C2[x].
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By induction hypothesis, we can find d\ and d2[x] such that

But then D(i(b\), ' redi di[d\] by the definition of one step re-
duction and b2[bi] and C2[ci] redi fifof^i] by the previous lemma so that d can be taken
to bec?2[di].

2.4.3.2.4. a has the form C . This case is completely
symmetric to the previous one.

2.4.3.2.5. a has the form Rn(m, a\,..., an). Then b has the form Rn(m, b\,
..., bn) or bm and c has the form cm where

By induction hypothesis, we can find dm such that

But then Rn(m, b\,..., bn) redi dm by the definition of one step reduction and bm and
cm redi dm so that d can be taken to be dm.

2.4.3.2.6. a has the form . Then b has the form

or £>2 and c has the form 02 where

By induction hypothesis, we can find di such that

But then by the definition of one step reduction and
bi and ci redi <^2 so that d can be taken to be di.

2.4.3.2.7. a has the form Then b has the form
or and c has the

form where

a\ redi b\, 02 redi bz, aj,[x, y] redi b^[x, y],
a\ redi c\, ai redi C2> a^[x, y] redi c^[x, y].
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By induction hypothesis, we can find d\, di and d$[x, y] such that

Let d be the expression Then
redi d and

and

by the definition of one step reduction so that " _ " " _ ~ '" _ '.'...'/. . ... and
redi d by the previous lemma as desired.

2.4.3.3. Lemma. If a redm b and a redn c then there is an expression d such that b
redn d and c redm d.

This folllows by mn applications of the previous lemma. The proof of the Church-
Rosser property is now complete.

2.4.4. Corollary. The relation a conv b is an equivalence relation.
The reflexivity and symmetry are both obvious from the definition. To prove the

transitivity, suppose that a conv b and b conv c. By the definition of the convertibility
relation, this means that there are expressions d and e such that a red d, b red d, b red e
and c red e. Because of the Church-Rosser property, we can find an expression / such
that d red / and e red /. Since the reducibility relation is transitive, a red / and c red
/ so that a conv c as desired.

It is a consequence of the transitivity of the convertibility relation that a sequence
of successive applications of the rule of type conversion can be condensed into one
application of the same rule. Thus, whenever convenient, we can assume that there is at
most one (or even precisely one) application of the rule of type conversion between two
successive applications of the non structural rules of term formation.

2.4.5. Uniqueness of normal forms. An expression can convert into at most one
normal expression.

First note that, because of the Church-Rosser property, an expression which con-
verts into a normal expression must necessarily reduce to it. So suppose that a red b and
a red c where a is an arbitrary expression and b and c are both normal. By the Church-
Rosser property, there is an expression d such that b red d and c red d. Since b and
c are both normal, they must be equal to d and hence equal to each other. Remember
that equality means syntactical equality neglecting differences in the naming of bound
variables.

2.4.6. Definitional equality. Two types A and B are said to be definitionally equal
provided A conv B. Also a term a of type A is definitionally equal to a term b of type
B if both a conv b and A conv B. Note that, because of the rule of type conversion, two
terms are of definitionally equal types if and only if they are of the same type. Two def-
initionally equal types denote the same abstract type, and, similarly, two definitionally
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equal terms denote the same object of the abstract type denoted by their types. Thus,
definitional equality is a relation between linguistic expressions and not between the
abstract entities which they denote (and which are the same). This explains why the
rule of type conversion, unlike all the other rules of term formation, has no counterpart
on the informal level. (It is superfluous to say that if a is an object of type A and the
types A and В are the same, then a is an object of type 5.)

Because of the representation of propositions as types and hence of proofs as mathe-
matical objects, the relation of definitional equality just introduced embraces at the same
time Tail's 1967 notion of definitional equality between the terms of Gödel's 1958 the-
ory of primitive recursive functionals of finite type and the notion of definitional equality
between derivations representing proofs that I have proposed earlier (see Prawitz 1971).

2.4.7. Theorem. The terms of a given type are closed under reduction.
This means that, if a term of a certain type reduces to an expression, then this ex-

pression is actually a term of the same type. Clearly, it suffices to prove this when
the expression is obtained from the given term by one step reduction. The proof is by
induction on the derivation of the given term. Several cases have to be distinguished.

2.4.7.1. The derivation of the given term has the form

and because . By induction hypothesis,
under t h e assumption a n d h e n c e f o l l o w s b y

П-introduction.
2.4.7.2. The derivation of the given term has the form

and b(a) redi d(c) because a redj с and b redi d. By induction hypothesis, and
, from which follows by -elimination. Type conversion

then yields as desired.
2.4.7.3. The derivation of the given term has the form

red
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where conv , that is, A conv В and B[x] conv D[x], and
because a redi с and b[x] redi d[x]. By induction hypothesis,

and under the assumption . The derivation

shows that d[c] is indeed a term of type B[a].
2 A.I A. The derivation of the given term has the form

and (a, b) redi (с, d) because a red] с and b redi d. By induction hypothesis, and

E-introduction.
2.4.7.5. The derivation of the given term has the form

and redi because с redi / and d[x, y]
redi gf*,}1]. By induction hypothesis, and
under the assumptions , and hence .
follows by -elimination. Type conversion then yields
as desired.

2.4.7.6. The derivation of the given term has the form

where conv , that is, A conv С and B[x] conv D[x],
and because a redj c, b redi d and d[x, y] redi

tybe conversion yield then follows byand
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g[x,y]. By induction hypothesis, and under the
assumptions and . The derivation

shows that g[c, d] indeed is a term of type C[(a, b)].
2.4.7.7. The derivation of the given term has the form

and i (a) redi i (с) because a redi с. By induction hypothesis, we get , from which
follows by -introduction. The other rule of -introduction is treated in

the same way.
2.4.7.8. The derivation of the given term has the form

and redi because с redi /> d[x}
redi g[x] and e[y] redi h [ y ] . By induction hypothesis, and
and under the a s s u m p t i o n s a n d , respectively, and hence

follows by -elimination. Type conversion then
yields as desired.

2.4.7.9. The derivation of the given term has the form

where A + В conv С + D, that is, A conv С and В conv D, and ,
because a redi с and d[x] redi g [ x ] . By induction hypothesis,
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and under the a s s u m p t i o n , The derivation

shows that g[c] is indeed a term of type C\i(a)}. The case when i (a) is replaced by
j (b) is treated in the same way.

2.4.7.10. The terms of type Nn cannot reduce to anything but themselves,
and hence this case is trivial.

2.4Л.11. The derivation of the given term has the form

and red; because с redi redi
/„. By induction hypothesis, we get , from which

follows by Nn -elimination. Type conversion then yields
as desired.

2.4.7.12. The derivation of the given term has the form

and redi fm because cm red] fm. By induction hypothesis, we get
as desired.

2.4.7.13. The case when the given term is 0 of type N is trivial, so suppose the
derivation of the given term has the form

and that s(a) redi s (с) because a redi с. By induction hypothesis, and hence
follows by TV-introduction.
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2.4.7.14. The derivation of the given term has the form

and l redi . . _ . . . . b e c a u s e с red] /, d redi g
and e[x, y] redi h[x, y]. By induction hypothesis, and
under the assumptions. and , and hence
follows by TV-elimination. Type conversion then yields
as desired.

2.4.7.15. The derivation of the given term has the form

and redi g because d redi g- By induction hypothesis, we get
g e C[0] as desired.

We also have to consider the case when the derivation of the given term has the form

and redi because a redi с,
d redi g and By induction h y p o t h e s i s , a n d

under the assumptions and The derivation

shows that is indeed a term of type C[s(a)].
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2.4.7.16. The derivation of the given term has the form

and redi ч - , . , because A red] С and B[x] red] D[x]. By
induction hypothesis, a n d u n d e r t h e a s s u m p t i o n . T h e derivation

shows that is indeed a term of type V.
The case when takes the place of is treated in the same way, so suppose instead

that the derivation of the given term has the form

and that A + В redi С + D because A redi С and В redi D. By induction hypothesis,
and so that as desired.

The case when the given term is one of NO, is trivial because they do not
reduce to anything but themselves. The proof of theorem 2.4.7 is now complete.

2.4.8. Corollary. The types are closed under reduction.
Suppose that a type A reduces to an expression В. We have to show that В is a type

as well and use induction on the construction of A. The induction step is trivial, and so
is the case when A is V. If A is a term of type V, then, by the previous theorem, В is
a term of type V and hence a type. Finally, suppose that A has the form
where are terms of types . , respectively. Then В
must have the form , where a\ red red bn. By the previous
theorem, a r e terms o f t y p e s , respectively. B u t

conv and hence, by the rule of type conversion,
b
indeed a type.

2.5. Axiom of choice. Let x and у be variables of types A and Я [JE], respectively,
and let С [JE, y] be a type. We shall show how to derive the axiom of choice, that is, how
to construct a closed term of type

isis a term of tybe



An intuitionistic theory of types 149

To begin with, note that, if we let p[z] and q[z] denote the terms
and which satisfy

then

hold as derived rules of term formation since they are instances of the -elimination
rule.

Now, suppose

and

П-elimination gives

from which the derived rules of inference just stated allow us to conclude

and

Type conversion on the latter yields

and we can then use П-introduction to get

as well as

Applying -introduction to the last two terms, we get

and a final -introduction then shows that

is a (closed) term of type

as desired.
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3. REDUCTION OF SOME OTHER FORMAL THEORIES TO THE
THEORY OF TYPES.

3.1. Intuitionistic first order predicate logic.
3.1.1. Formulae are built up as usual from individual variables, function constants

and predicate constants by means of the logical operators and . The
negation A of a formula A is defined as . We take the rules of inference from
Gentzen 1934.

'-introduction

-elimination

-introduction

-elimination

-introduction

-elimination

'-introduction

-elimination

-introduction

-elimination
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-elimination

3.1.2. To translate this system into the theory of types, we first introduce a 0-ary
type constant for the type of individuals and then proceed as follows.

3.1.2.1. Translation of the language.
3.1.2.1.1. An individual variable x is mapped into a variable of type
3.1.2.1.2. An n-ary function symbol / is mapped into a constant oftype

and, if a\,..., an are individual terms, we let be
3.1.2.1.3. An n-ary predicate constant P is mapped into an n-ary type constant

with all arguments of type
3.1.2.1.4. An atomic formula P(a\,..., an) is mapped into the type ,
, and the formulae. are translated into

the types NO, .
respectively. Note that, for every formula A, the type is normal.

3.1.2.2. Translation of the derivations. By induction on the length of a derivation a
of a formula A in first order logic, I shall construct a term of type in the theory of
types.

3.1.2.2.1. Corresponding to an assumption A in first order logic, we introduce a
variable oftype in the theory of types.

3.1.2.2.2. -introduction.

By induction hypothesis, we have constructed a term of type where is
the variable of type that corresponds to the assumption A. The translation of the
derivation o f i s defined t o b e . B y t h e rule o f -introduction, this i s
a term of the type which is

3.1.2.2.3. -elimination.

By induction hypothesis, we have constructed terms and of types and
, respectively. The translation of the derivation of В is defined to be which,

by the rule of -elimination and the definition of as . , is a term of
type .

and
and
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3.1.2.2.4. -introduction.

By induction hypothesis, we have constructed terms : and of types and _ ,
respectively. The translation of the derivation of is defined to b e i . By the
rule of introduction, this is a term of the type. which is

3.1.2.2.5. elimination.

By induction hypothesis, we have constructed a term of type . The transla-
tion of the derivation of A is defined to be , that is, , which, by
the rule of -elimination and the definition of as , is a term of type

. The case when В rather than A is inferred from A &B is treated in the same way.
3.1.2.2.6. -introduction.

By induction hypothesis, we have constructed a term of type . The translation of
the derivation of is defined to be . By the rule of -introduction, this is a
term of the type. which is . The case in which is inferred from
В instead of A is treated in the same way.

3.1.2.2.7. -elimination.

By induction hypothesis, we have constructed terms and of types
and , respectively, where and are the variables corresponding

to the assumptions A and B. The translation of the derivation of С is defined to be
which, by the rule of -elimination and the definition

of is a term of type as required.
3.1.2.2.8. -introduction.
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By induction hypothesis, we have constructed a term of type where is
the variable of type which corresponds to the individual variable x. The translation
of the derivation of is defined to be By the rule of -introduction,
this is a term of the type which is

3.1.2.2.9. -elimination.

By induction hypothesis, we have constructed a term of type . Let the
term of type be the translation of the individual term a. The translation of the
derivation of В [a] is defined to which, by the rule of -elimination and the
definition o f a s , i s a term o f t y p e . I t only remains
to remark that equals

3.1.2.2.10. l-introduction.

By induction hypothesis, we have constructed a term of type or, what amounts
to the same, . Let the term of type be the translation of the individual term
a. The translation of the derivation of is defined to be . By the rule of

-introduction, this is a term of the type which is
3.1.2.2.11. -elimination.

By induction hypothesis, we have constructed terms and of types
and , respectively, where is the translation of the individual variable

x and is the variable of type that corresponds to the assumption B [ x ] . The
translation of the derivation of С is defined to be which,

term of type
3.1.2.2.12. -elimination.

b y  t h e  r u l e  o f e l i m i n a t i o n  a n d  t h e  d e f i f i t i o n  o f i s  a
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By induction hypothesis, we have constructed a term of type . The translation of
the derivation of С is defined to be RQ which, by the rule of NO -elimination and the
definition of as NO, is a term of type

3.1.3. Consider the reduction relation between derivations in first order logic which
is generated by Prawitz's 1965 rules of contraction.

-contraction

-contraction

-contraction

-contraction

-contraction

The mapping of the derivations of first order logic into terms of the theory of types is an
isomorphic imbedding in the sense that, if a red b, then red, , and, conversely, if a
is a derivation in first order logic and red , then is the translation of a derivation

contr

contr contr

contr

contr

contr

contr
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b in first order logic such that a red b. Consequently, Prawitz's 1965 normalization
theorem for first order logic is a corollary of the normalization theorem for the theory
of types that will be proved later on.

3.2. Intuitionistic first order arithmetic.
3.2.1. As usual, we take the language to be the language of first order predicate

logic based on the single binary predicate constant = and the four function constants,
, and •. We also include the propositional constant T for truth. To the rules of

inference of intuitionistic first order predicate logic, we add the axiom T, the induction
schema

and the rule of formula conversion

A conv В

where conv is the convertibility relation which is generated by the rules of contraction

It is easy to verify that the usual axioms for number theory as given by Kleene 1952, for
example, can be derived in this system.

When one is interested in the reduction of derivations, the present formulation of
first order arithmetic has a definite advantage over the standard one. Suppose namely
that the numerical term a reduces to b. We then want a derivation of the form

c o n t r ? ?  ? ? ?  ? ? ? ?  ? ?  ? ? ? ? ? ? ? ? ? ? ? ?  ? ? ?  ? ? ?  ? ? ? ? ? ? ? ? ? ?  ? ? ?  ? ?  ?

contrcontr

contr

contr

contr

contr
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to reduce to the derivation in which a has been replaced by b,

However, if arithmetic is formulated without a rule of formula conversion, this reduction
cannot be carried out without inserting a logically complex derivation of C[a] from
C[b], and this is a transformation which destroys the structure of the derivation to such
an extent that the transformed derivation fails to be defmitionally equal to the original
one.

3.2.2. The translation of first order arithmetic into the theory of types proceeds as
follows.

3.2.2.1. Translation of the language.
3.2.2.1.1.A numerical variable x is translated into a variable of type W.
3.2.2.1.2. « : is taken to be the term 0 of type N.
3.2.2.1.3. is
3.2.2.1.4. is
3.2.2.1.5. is
3.2.2.1.6. An equation a = b is translated into where E (a, b) is defined

tobe

which is a term of type V and hence a type that satisfies the schema

Note that the axioms and which form part of the reflection principle are
needed in order to prove that E (a, b) is a term of type V and hence a type.

3.2.2.1.7. The translation of composite formulae runs as in the case of first order
predicate logic, the prepositional constant T being translated into NI.

3.2.2.2. Translation of the derivations. In addition to the rules of inference of first
order predicate logic already stated, we have to consider the axiom T, the induction
schema and the rule of formula conversion.

3.2.2.2.1. The axiom T is translated into the term 1 of the type NI which is

conv
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3.2.2.2.2. Let us now turn to the induction schema,

By the hypothesis of the induction on the length of the given derivation, we have found
terms and of types and , respectively, being the variable
of type that corresponds to the assumption С [x ]. The translation of the derivation
of C[a] is defined to be which, by the TV-elimination
rale, is a term of type or, what amounts to the same,

Note that the translation is such that the induction contractions in first order arith-
metic (see, for example, Prawitz 1971)

are mapped into the contractions

in the theory of types.
3.2.2.2.3. If the term of type is the translation of the derivation of the premise

of an application of the rule of formula conversion

contr

contr

contr

contr

contr
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we can take the translation of the derivation of В to be the same term , because
A conv В implies conv and hence we can conclude that is a term of type
by the rule of type conversion.

3.3. Intuitionistic arithmetic of finite type with the axiom of choice.
3.3.1. The formalization of this theory that we shall consider extends the system of

first order arithmetic specified above and differs in certain respects from the ones given
by Spector 1962, Tait 1967 and Troelstra 1971.

3.3.1.1. Types. 0 is a type, and, if a and are types, so is
3.3.1.2. Terms.
3.3.1.2.1. A variable of type is a term of type .
3.3.1.2.2. 0 is a term of type 0, and, if a is a term of type 0, so is a!.
3.3.1.2.3. If x is a variable of type and b[x] is a term of type , then is

a term of type
3.3.1.2.4. If c, d and e [ x , y] are terms of types 0, and , respectively, x being a

numerical variable and y a variable of type , then is a term
of type .

3.3.1.2.5. If a and b are terms of types and i , respectively, then b(d) is a
term of type .

3.3.1.3. Formulae are built up from numerical equations by means of propositional
connection and quantification of variables of arbitrary finite type.

3.3.1.4. Rules of contraction.

3.3.1.5. The rules of inference are those of intuitionistic first order arithmetic,
except that the quantifier rules have to be extended in the obvious way to all finite types.
In addition, there is the (intuitionistically valid) axiom of choice

with x, y and / of arbitrary types and , respectively.
3.3.2. The translation of this theory into the theory of types proceeds as follows.
3.3.2.1. Translation of the types. We take to be N and tobe
3.3.2.2. Translation of the terms.

contr

contr

contr

contr

contr
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3.3.2.2.1.A variable x of t y p e i s translated into a v a r i a b l e o f type
3.3.2.2.2. is the term Oof type N, a n d i s
3.3.2.2.3. is defined to be
3.3.2.2.4. is defined to be

i.
3.3.2.2.5. is defined to be
3.3.2.3. The translation of the formulae runs as in the case of first order arithmetic,

the only novelty being that ' and : with x of type are defined to be
and , respectively.

3.3.2.4. The interpretation of the rules of inference is no more complicated than
in the case of first order arithmetic, the quantifier rules of inference of higher type
being treated just like those of ground type. There remains the axiom of choice, whose
translation

is but an instance of the axiom of choice in the theory of types which we proved in
section 2.5.

3.3.3. When the law of the excluded middle (or, equivalently, reductio
ad absurdum • is added to intuitionistic arithmetic of finite type with the
axiom of choice, the resulting system contains full simple type theory. (See Spector
1962, for example, in the case when the function which exists by virtue of the axiom
of choice and the species which exists by virtue of the comprehension axiom both have
arguments of ground type.) Thus the proof theoretic strength of the system increases
by a very large amount. Since intuitionistic arithmetic of finite type with the axiom
of choice is a subsystem of the theory of types, the same holds for the latter theory.
Consequently, the axiom schema . (or, equivalently, ) is not consistent
relative to the theory of types, although, of course, it may be proved to be consistent
by stronger means. In particular, there is no hope for the double negation interpretation
(see Kolmogorov 1925, Gödel 1933 and Gentzen 1933) to work, the reason for this
being that the axioms for and are stronger than the usual intuitionistic axioms for

and
3.4. Intuitionistic arithmetical analysis with the axiom of choice.
3.4.1. To the system of first order arithmetic we now add и-агу predicate variables

X, У , . . . for every An atomic formula is either of the form a = b or of
the form where В is an n-ary predicate term and a\,..., an are numerical
terms. Formulae are built up from atomic ones by means of the propositional connec-
tives and quantifiers of both first and second order. An n-ary predicate term is either an
и-ary predicate variable or of the form where
is a formula which contains no bound predicate variables. The first order quantifier rules
of inference are extended in the obvious way to the second order. Finally, we add the
axiom of choice
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Here Y is a predicate variable of one argument more than X and C[x, Y(x)] denotes the
result of replacing every part of С [x, X] of the form by

3.4.2. The translation of mis theory into the theory of types proceeds as in the case
of first order arithmetic with the following additions.

3.4.2.1. An и-ary predicate variable X is translated into a variable. of type

in the theory of tvpes.
3.4.2.2. is defined to be
3.4.2.3. a n d a r e translated 

and , respectively.
3.4.2.4. is defined to be

jc*] which is seen to be a term of type by repeated use of the
reflection principle and the fact that the translations and ¡ of
the atomic formulae a = b and , are terms of type V.

3.4.2.5. The second order quantifier rules of inference are interpreted just like the
first order ones.

3.4.2.6. The translation of the axiom of choice

is just an instance of the axiom of choice in the theory of types which we proved in
section 2.5.

4. THE NORMALIZATION THEOREM AND ITS CONSEQUENCES.

4.1. Normalization theorem. Every term reduces to a normal term.
Since we have introduced constants of every closed type, it will be sufficient to

prove normalization for closed terms. Suppose namely that, is an open
term which depends o n t h e variables o f t y p e s , r e -
spectively. For we may then introduce a constant am of the closed type

. By substituting the constants for the variables.
we get a closed term which behaves just like from the point of view of
normalization.

My proof of normalization uses an extension of the method of computability in-
troduced by Tait 1967 in order to prove normalization for the terms of Gödel's 1958
theory of primitive recursive functionals of finite type and systematically exploited in
the 'Proceedings of the Second Scandinavian Logic Symposium'. In Gödel's theory, the
types and the terms are generated separately from each other. This makes it possible,
first, to define by induction on the construction of a type the notion of computability for
terms of that type, and, second, to prove by induction on the construction of a term that

latedinto
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it is computable. In the present theory, however, the definition of the notion of com-
putability and the proof that an arbitrary term is computable can no longer be separated,
because the terms and the types are generated simultaneously. Instead, we have to show
by induction on the construction of a type or term, in case A is a type, how to define the
predicate which expresses the computability of a term of type A, and, in case a is a
term of type A, that is defined and that i holds, that is, that a is a computable
term of type A.

The situation is further complicated by the fact that a type as well as
a term of type in general depends on certain free variables

of types , respectively. By induction hypothesis,
we shall then know that has been defined and that if a\ is a closed term of
type AI such that , then has been defined and t h a t i f
are closed terms of types " ", respectively, such that ,

then I has been defined. Letting
closed terms of types respectively, such that

we have to show, in case is a type, how to define

and, in case a is a term of type , that • is defined and
that

holds, that is, that a is a computable term of type Several
cases have to be distinguished, one for each of the rules of type and term formation. In
order to alleviate the notational burden, I shall not exhibit explicitly any free variables
except the eigenvariables of the particular rule of type or term formation which is being
considered.

It will be convenient to say that a term has introduction or elimination form de-
pending on whether it has been formed by means of one of the introduction or one of
the elimination rules. Thus, unless it is a constant, a closed term necessarily has either
introduction or elimination form.

4.1.1. Definition of for a type symbol A.
4.1.1.1. is the species of normalizable closed terms of type

4.1.1.2. Suppose that has been defined and that has been defined for all
closed terms a of type A such that ). We then define by the following
three clauses.

4.1.1.2.1. If is a closed term of type and for all
closed terms a of type A such that , then ( i .

4.1.1.2.2. A closed normal term of type which is not of the form
satisfies
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4.1.1.2.3. If the closed term b of type has elimination form and
reduces to a term a such that , then

4.1.1.3. Again, suppose that has been defined and that has been defined
for all closed terms a of type A such that We then define by the
following three clauses.

4.1.1.3.1. If a and b are closed terms of types A and B[a], respectively such that
, then

4.1.1.3.2. A closed normal term of type which is not of the form
(a, b) satisfies

4.1.1.3.3. If the closed term b of type has elimination form and
reduces to a term a such that ' ' , then ).

4.1.1.4. Supposing and have been defined already, we define by the
following three clauses.

4.1.1.4.1. If a is a closed term of type A such that , then . Simi-
larly, if b is a closed term of type В such that i , then

4.1.1.4.2. A closed normal term of type A + В which is neither of the form ¿(a)
nor of the form j (b) satisfies

4.1.1.4.3. If the closed term b of type A + В has elimination form and reduces to a
term a such that , then

4.1.1.5. The predicate is defined by transfinite induction. But, simultaneously
with the definition of the meaning of , that is, of what constitutes a proof of

, we have to define by transfinite induction the predicate which expresses
what it means for a closed term of the small type A to be computable. Actually,
depends not only on A but also on the proof of ) although my notation does not
indicate that explicitly.

4.1.1.5.1.If С is a closed normal term of type V which is not of the form
or A + B, then and is defined to be the species of

normalizable closed terms of type C.
4 . 1 . 1 . 5 . 2 . I f l a n d for all closed terms a of type A such that

then i and is defined as in 4.1.1.2.
4.1.1.5.3. This case is like the previous one, replacing by and referring to

4.1.1.3 instead.
4.1.1.5.4. I f a n d , t h e n a n d i s defined a s i n 4.1.1.4.
4.1.1.5.5. If the closed term В of type V has elimination form and reduces to a term

A such that , then and is set equal to
4.1.1.6. If A is a term of type V such that i,then is the associated predicate

defined in 4.1.1.5.
4.1.2. Lemma. When defined, the predicate has the following three proper-

ties. First, holds if a is a closed normal term of type A which does not have
introduction form. Second, ifb is a closed term of type A which has elimination form
and reduces to a term a such that , then' ' " Third,implies that a is
normalizable.

We prove the lemma by induction on the definition of
4.1.2.1. is the species of normalizable closed terms of type
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and has therefore trivially the three properties stated in the lemma.
4.1.2.2. has trivially the first two properties. To verify the third, sup-

pose that a term satisfies |. Then it reduces to a term which is either nor-
mal, in which case we are done, or else has the form and the property that

for all a such that . By induction hypothesis, holds if a is a
constant of type A. Consequently, is defined and so that b[a] is nor-
malizable by induction hypothesis. And, b[a] being normalizable, so is

4.1.2.3. was defined so as to have the first two properties. To verify the
third, suppose that a term satisfies It must then reduce to a term which is
either normal, in which case we are done, or else has the form (a, b) where and

I. By induction hypothesis, a and b are normalizable and, consequently, so is
(a,b).

4.1.2.4. was defined so as to have the first two properties. To verify the third,
suppose that a term satisfies . It must then reduce to a term which is either normal,
in which case we are done, or else has the form i (a) or j (b) where, in the first case,

and, in the second case, . By induction hypothesis, implies that a is
normalizable and implies that b is normalizable. Hence I (a) is normalizable in
the first case and j (b) in the second.

4.1.2.5. was defined so as to have the first two properties. By transfmite induc-
tion on the proof of , we shall at the same time prove t h a t i m p l i e s that A
is normalizable and verify that the associated predicate has all the three properties
stated in the lemma.

4.1.2.5.1. If С is a closed normal term of type V which is not of the form
or A + B, then С is a fortiori normalizable and the associated

predicate , being defined as the species of normalizable closed terms of type C, has
trivially all the three properties stated in the lemma.

4.1.2.5.2. Suppose that is concluded from and
for all terms a such that I . By induction hypothesis, A is normalizable and if
a is a constant of type A. Hence so that, again by induction hypothesis, В [a]
is normalizable. But then so is " ~ ~ ]. The verification that the lemma holds for

is as in case 4.1.2.2.
4.1.2.5.3. This case is like the previous one, replacing by and referring to

4.1.2.3 instead.
4.1.2.5.4. Suppose that has been concluded from andi .By

induction hypothesis, A and ß are normalizable and hence so is A + B. The verification
that the lemma holds for is as in case 4.1.2.4.

4.1.2.5.5. Suppose that is concluded from and the knowledge that
the closed term В of type V has elimination form and reduces to A. By induction
hypothesis, A is normalizable and has all the three properties stated in the lemma.
Hence ß is normalizable and, since was set equal to ,, the lemma holds for as
well.

4.1.2.6.That the lemma holds for the predicateassociated with a term of type
V such that has just been proved in 4.1.2.5. The proof of the lemma is now
complete.
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4.1.3. Lemma. If and are both defined and A conv B, then ifandonly
if

Note that, in accordance with the remark in 4.1.1.5, the lemma is not trivially true
even if A and В are syntactically equal, because even for one and the same type symbol
A there may be different ways of defining the predicate

Since A conv B, the types A and В are either both small or both large. In the latter
case, they must be built up in the same way from V, definitionally equal atomic types of
the form and definitionally equal small types. was defined in
4.1.1.1 to be the species of normalizable closed terms of type . Hence, if

conv , thei and are extensionally
equal because of the rule of type conversion. It now only remains to prove the lemma
for two small types A and B. When A is a small type, is defined if and only if
Therefore we can use transfinite induction on the proofs of and . Several
cases have to be distinguished depending on how ' and have been inferred.

4.1.3.1. If both and hold by virtue of 4.1.1.5.1, then and are
the species of normalizable closed terms of types A and В, respectively, and so they are
extensionally equal by the rule of type conversion.

4.1.3.2. If A and В have the forms and , respectively,
then С conv E and D[x] conv F[x]. Hence and are extensionally equal by
induction hypothesis. For the same reason, and are extensionally equal for
all с such that or, equivalently, . Being defined by 4.1.1.2, and are
extensionally equal as well.

4.1.3.3. This case is like the previous one, replacing by and referring to 4.1.1.3
instead.

4.1.3.4. If A and В have the forms С + D and E + F, respectively, then С conv E
and D conv F. Hence, on the one hand, and on the other hand, and
are extensionally equal by induction hypothesis. Being defined by 4.1.1.4, and i
are extensionally equal as well.

4.1.3.5. If one of i and , say , is inferred by 4.1.1.5.5, then A
reduces to С such that . By induction hypothesis, and are extensionally
equal, and, since in this case is set equal to , so are and

4.1.4. Verification that, if a is a term of type A, then is defined and
4.1.4.1. When we introduce a variable x of type A, we know by induction hypoth-

esis that is defined. We have to show that is defined and that, if a is a closed term
of type A, such that i , then . This requires no argument.

4.1.4.2. When we introduce a constanta of type A, we know by induction hypoth-
esis that is defined. We have to show that is defined and that holds which
follows from the first part of lemma 4.1.2.

4.1.4.3. -introduction. By induction hypothesis, we know that is defined
and that, if a is a closed term of type A, then is defined and i I. Hence

is defined by 4.1.1.2 and holds by virtueof 4.1.1.2.1
which is what we had to prove.

4.1.4.4. -elimination. By induction hypothesis, we know that and
are defined and that and i ) both hold. Three cases have to be
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distinguished corresponding to the defining clauses of
4.1.4.4.1. b is of the form holds for all a such that '.

Then b(a) has elimination form and reduces to d[a] so that i by the second
part of lemma 4.1.2.

4.1.4.4.2. b is normal and not of the form . Let с be the normal form of
a which exists by the third part of lemma 4.1.2. Then b(a) reduces to b(c) which is
normal and has elimination form so that by the first and second parts of
lemma 4.1.2.

4.1.4.4.3. b has elimination form and reduces to d which satisfies
Then b(a) reduces to d(a) which we have already shown to satisfy . Hence

by the second part of lemma 4.1.2.
4.1.4.5. -introduction. By induction hypothesis, is defined and is defined

for all a such that . Also, l and i. Hence is defined by
4.1.1.3 and holds by virtue of 4.1.1.3.1.

4.1.4.6. -elimination. B y induction hypothesis, w e know t h a t i s
defined and that is defined for all с such that . Also,
holds and holds for all a and b such that and . Three
cases have to be distinguished corresponding to the defining clauses of

4.1.4.6.1. с has the form (a, b) where • and . Then I
d[x, y]) has elimination form and reduces to d[a, b] which satisfies . Hence

by the second part of lemma 4.1.2.
4.1.4.6.2. с is normal and not of the form (a,b). Let a and b be constants of types

A and B [ a ] , respectively. Then and < by the first part of lemma 4.1.2.
Hence < so that d[a, b] reduces to a normal term g[a, b] by the third
part of lemma 4.1.2. But then , reduces to
which is normal and has elimination form so that < by the
first two parts of lemma 4.1.2.

4.1.4.6.3. с has elimination form and reduces to a term / which satisfies
. Then reduces to which we

part of lemma 4.1.2 and lemma 4.1.3.
4.1.4.7. -introduction. By induction hypothesis, and are both defined

and holds. Hence is defined by 4.1.1.4 and < ¡ h o l d s by virtue of
4.1.1.4.1. The second rule of -introduction is treated in the same way.

4.1.4.8. -elimination. By induction hypothesis, we know that is defined and
that is defined for all с such that Also, holds and
and hold for all a and b such t h a t a n d respectively. Three
cases have to be distinguished corresponding to the defining clauses of

4.1.4.8.1. с has the form ¿(a) and i .Then . has elim-
ination form and reduces to d[a] which satisfies j. Hence ,

by the second part of lemma 4.1.2. The case when с is of the form j(b) is
treated in the same way.

4.1.4.8.2. с is normal and not of the form i(a) or j(b). Let a and b be constants
of types A and В, respectively. Then i and by the first part of lemma 4.1.2.

???? ??????? ????? ?? ??????? ??????? ??? ?????? by The Seconda
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Hence and so that d[a] and e[b] reduce to normal terms
g[a] and h\b} bv the third Dart of lemma 4.1.2. But then
reduces to which is normal and has elimination form so that

by the first two parts of lemma 4.1.2.
4.1.4.8.3. с has elimination form and reduces to a term / which satisfies

then
ready shown to satisfy Hence by the second
part of lemma 4.1.2 and lemma 4.1.3.

4.1.4.9. Nn-introduction. is defined by 4.1.1.5.1 to be the species of normaliz-
able closed terms of type Nn. Hence i .

4.1.4.10. Nn-elimination. By induction hypothesis, we know that is defined
for all с such that . Also, and . We distinguish
three cases depending on the form of c.

4.1.4.10.1. с is m. Then , has elimination form and reduces to
c
4.1.2.

4.1.4.10.2. с is normal and not one of . By the third part of lemma 4.1.2,
reduce to normal terms . Hence reduces to

which is normal and has elimination form so that
by the first two parts of lemma 4.1.2.

4.1.4.10.3. с is not normal but reduces to a normal term /. Then -
reduces to , which we have already shown to satisfy Hence

by the first part of lemma 4.1.2 and lemma 4.1.3.
4.1.4.11. ^-introduction. is defined by 4.1.1.5.1 to be the species of normaliz-

able closed terms of type N. Hence holds and implies i .
4.1.4.12. Л'-elimination. By induction hypothesis, we know that is defined

for all a such that . Also, i hold and holds for
all a and b such that and . We distinguish four cases depending on how
we have inferred

4.1.4.12.1. с is 0. Then reduces to d which satisfies
so that

by the second part of lemma 4.1.2.
4.1.4.12.2. с is of the form s (a). We then know already that and <

both hold so that we can conclude
. B u t reduces t

that it must satisfy by the second part of lemma 4.1.2.
4.1.4.12.3. с is normal and has elimination form. From we can conclude

that d reduces to a normal term g by the third part of lemma 4.1.2. Also, let a and
b be constant of types N and С [a], respectively. Then and by the
first part of lemma 4.1.2. Hence i so that e[a, b] reduces to a normal
term h[a, b], again by the third part of lemma 4.1.2. But then

reduceds which we have al

and

? ????? ????????? ? ??????? ??? ????a?? ???? ?? ?????
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reduces to which is normal and has elimination form so that
< by the first two parts of lemma 4.1.2.

4.1 A.12.4. с has elimination form and reduces to a term / such that . Then
reduces to ; which we have already

shown to satisfy Hence by the second part of
lemma 4.1.2 and lemma 4.1.3.

4.1.4.13. У-introduction, and all hold by virtue of
definition 4.1.1.5.1. Next, suppose that holds and that (py(B[a]) holds for all a
such that ( . Then we can conclude and by
4.1.1.5.2and 4.1.1.5.3. Finally, suppose that and both hold. Then we can
conclude by 4.1.1.5.4.

4.1.4.14. Type conversion. By induction hypothesis, and are both defined
and holds. Hence by Iemma4.1.3. Theproof of the normalization theorem
is now complete.

4.2. Corollary. Every type reduces to a normal type.
Every type is built up by means of the operations , , and from , small types

and atomic types of the form . A small type, being a term of type ,
is normalizable according to the normalization theorem, and so is a type of the form

since are all terms. Hence every type is normalizable.
4.3. Corollary. It can be mechanically decided whether or not two terms or two

types are definitionally equal.
Let A and В be two types. In order to decide whether or not A conv В we simply

normalize A and B, which is possible according to the previous corollary, and check
whether or not their normal forms are syntactically equal except possibly for differences
in the naming of their bound variables. Similarly, if a is a term of type A and b a term of
type B, we first decide whether or not A conv В and then, in case the answer is positive,
whether or not a conv b. According to the normalization theorem, the latter decision
can also be reached by normalizing a and b and checking if their normal forms are the
same.

4.4. The form of the normal terms. In order to determine the syntactical form of
the normal terms, it will be convenient to introduce some terminology. The major sub-
term of a term which has elimination form is defined by stipulating that the major sub-
term of b(a) is b and that the major subterm of

and in all cases is c. The main
redex of a redex is the redex itself, and the main redex of a term which has elimination
form but is not a redex is the main redex of its major subterm. If a term has elimina-
tion form, then either it contains a main redex or else by taking the major subterm of
its major subterm of of its major subterm we reach a constant or a free variable,
because when we form a term of elimination form no free variable in its major subterm
can become bound. In particular, a normal term must either have introduction form or
contain a constant or a free variable. Hence we have proved (by purely combinatorial
reasoning) that, in the system without object constants,
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a closed normal must have
term of type the form

Combining this with the normalization theorem, we can conclude that a closed term of
one of the types shown in the left column reduces to a term of the form exhibited on the
same line in the right column.

4.5. Corollary. A number theoretic function which can be constructed in the theory
of types is mechanically computable.

Of course, the fact that there is a not necessarily mechanical procedure for comput-
ing every function in the present theory of types does not require any proof at all for
us, intelligent beings, who can understand the meaning of the types and the terms and
recognize that the axioms and rules of inference of the theory are consonant with the
intuitionistic notion of function according to which a function is the same as a rule or
method.

By saying that a number theoretic function can be constructed in the theory of types,
I mean that there is a closed term / of type which denotes it. (Of course, /
must not contain any object constants.) Suppose that we want to find the value of the
function for a certain natural number which is denoted by the numeral m. Then f ( m )
denotes the value of the function for this argument. But / (m) is a closed term of type ./V
so that, according to what was proved in 4.4, it reduces to a numeral n. It only remains
to remark that the normal form of a term can be found in a purely mechanical way,
that is, by manipulating symbol strings according to rules which refer solely to their
syntactical structure and not to their meaning.

Similarly, having formalized the construction of the real numbers (for example, as
Cauchy sequences of rationals) in the theory of types, we can prove as a corollary to
the normalization theorem that every individual real number which we construct in the
formal theory can be computed by a machine with an arbitrary degree of approximation.

These corollaries show that formalization taken together with the ensuing proof the-
oretical analysis effectuates the computerization of abstract intuitionistic mathematics
that above all Bishop 1967 and 1970 has asked for. What is doubtful at present is not
whether computerization is possible in principle, because we already know that, but
rather whether these proof theoretical computation procedures are at all useful in prac-
tice. So far, they do not seem to have found a single significant application.

4.6. Completeness of intuitionistic first order predicate logic. Consider a first
order formula С containing no other logical constants than and , and let be
its translation into the theory of types as defined in section 3.1.2.1. Remember that in
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order to define the translation we had to introduce, first, a type constant denoting the
type of individuals, second, for every predicate constant P, a type constant with all
arguments of type . , and, third, for every function constant /, an object constant.
of type '. We suppose that no other object constants than these have
been introduced into the theory of types.

4.6.1. Theorem. Let С be a closed first order formula. Then there is a closed term
of type in the theory of types if and only if С is provable in intuitionistic first order
predicate logic.

This shows that the fragment of first order predicate logic determined by and is
complete relative to the theory of types. Kreisel 1970 has suggested to call this property
faithfulness rather than completeness since it is quite different from the property that
classical first order predicate logic enjoys by virtue of Gödel's completeness theorem.

The sufficiency was established already in section 3.1.2.2 where we showed how to
translate a derivation с of a formula С in intuitionistic first order predicate logic into a
term of type _ in the theory of types. The translation is such that is closed if
and only if the derivation с contains no free individual variables and no undischarged
assumptions.

The necessity is a consequence of the normalization theorem and lemma 4.6.3 be-
low.

4.6.2.Lemma. L e i b e a normal term of typewhose free variables are either
of type or of type where A is a first order formula. Then there is an individual
term a whose translation is

The proof is by induction on the size of the term which, being of type . , cannot
have introduction form. Hence we can take the major subterm of of its major
subterm until we reach either a variable or a constant. In the first case, it must be a
variable of type and we are done, and, in the second case, it must be a constant

: of type , so that is of the form . By induction
hypothesis, are translations of individual terms in first order logic.
Hence is the translation of the individual term

4.6.3. Lemma. Let С be a first order formula and suppose that is a normal term
of type whose free variables are either of type or of type where A is a first
order formula. Then there is a derivation с of the formula С in intuitionistic first order
logic whose translation is

The proof is by induction on the construction of . Three cases have to be distin-
guished.

4.6.3.1. and have the forms and Respectively.
By induction hypothesis, there is a derivation

in intuitionistic first order logic whose translation is Consequently, we can take
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с to be the derivation

4.6.3.2. and have the forms and , respectively. By
induction hypothesis, there is a derivation

in intuitionistic first order logic whose translation is ]. Consequently, we can take
с to be the derivation

in which the assumption A corresponding to the variable of type has been can-
celled.

4.6.3.3. с has elimination form. Being normal, this is not possible unless it has the
form where is a variable of a type which is the translation of a
first order formula ß. But then the type of must be either or of the form where

is a first order formula. In the first case, we can conclude from the previous lemma
that must be the translation of an individual term a,-, and, in the second case, we can
conclude from the induction hypothesis that must be the translation of a derivation
a,- of the formula A,- in intuitionistic first order logic. Consequently, is the translation
of the derivation с which is obtained by letting the assumption be followed by a
sequence of elimination inferences, in the first case, a -elimination with the individual
term a,- in the conclusion, and, in the second case, an application of modus ponens with
A,; as minor premise.
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