
Highlights of the History of
the Lambda-Calculus
J. BARKLEY ROSSER

This paper gives an account of both the lambda-calculus and its close relative,
the combinatory calculus, and explains why they are of such importance for
computer software. The account includes the shortest and simplest proof of
the Church-Rosser theorem, which appeared in a limited printing in August
1982. It includes a model of the combinatory calculus, also available in 1982 in
a limited printing. In the last half-dozen years, some revolutionary new ideas
for programming have appeared, involving the very fundamentals of the
lambda-calculus and the combinatory calculus. A short introduction is given for
a couple of these new ideas.

Categories and Subject Descriptors: F. 1, I [Computation by Abstract
Devices]: Models of Computation-computability theory; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical
Logic-lambda-calculus and related systems; K.2 [History of
Computing]-people, software

General Terms: Theory
Additional Key Words and Phrases: combinatory calculus, Turing machines,

foundations of programming, Church’s thesis

“Kleene-ness is next to G&fel-ness”

1. Early Beginnings

The lambda-calculus originated in order to study fimc-
tions more carefully. In 1893 Frege observed (see van
Heijenoort 1967, p. 355) that it suffices to restrict
attention to functions of a single argument. Suppose
we wish a function to apply to A and B to produce
their sum, A + B. Let @ be a function, of a single
argument, that when applied to A alone produces a
new function, again of a single argument, whose value
is A + B when applied to B alone. Note that @ is not

0 1984 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Adapted with permission from a paper presented at the 1982 ACM
Symposium on LISP and Functional Programming. 0 1982, Asso-
ciation for Computing Machinery, Inc. Sponsored by the United
States Army under Contract No. DAAG29-80-C-0041.
Author’s Address: Mathematics Research Center, University of
Wisconsin, 610 Walnut Street, Madison, WI 53705.
0 1984 AFIPS 0164-l 239/84/040337-349$01 .OO/OO

applied simultaneously to A and B, but successively
to A and then B; application to A alone produces an
intermediary function @(A), which gives A + B when
later applied to B alone. That is, A + B = (@(A))(B).

This method of reducing the use of a function “+”
of two arguments to proper use of a related function
“W of one argument only is often referred to as
“currying” because it was brought into prominence by
the writings of Haskell B. Curry. Obviously, the
method can be extended to reduce the use of a function
of still more arguments to proper use of a related
function of one argument only.

This is the way computers function. A program in
a computer is a function of a single argument. People
who have not considered the matter carefully may
think, when they write a subroutine to add two num-
bers, that they have produced a program that is
a function of two arguments. But what happens
when the program begins to run, to produce the sum
A + B? First A is brought from memory. Suppose that
at that instant the computer is completely halted.

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 337 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser l Lambda-Calculus

What remains in the computer is a program, to be
applied to any B that might be forthcoming, to produce
the sum of the given A and the forthcoming B. It is a
function of one argument, depending on the given A,
to be applied to any B, to produce the sum A + B. It
is Frege’s intermediary function @(A).

Apparently Frege did not pursue the idea further. It
was rediscovered independently (see Schonfinkel
1924), together with the astonishing conclusion that
all functions having to do with the structure of func-
tions can be built up out of only two basic functions,
K and S. Let us adopt the notation that has been in
vogue since then. Instead of writing the value that we
get by applying the function F to A as F(A), we write
(FA). Omission of the outside parentheses will be
usual. When more than two terms occur, association
is to the left; thus MNP denotes ((MN)P), but
M(NP) denotes (M(NP)). Then the sum of A and B
would be written @A&

The functions K and S are such that

KAB=A (1.1)

SABC = A,C(BC) (1.2)

For a proof that all functions can be built up of K and
S, we can consult the original Schonfinkel paper, two
early papers by Curry (1929 or 1930), or Curry and
Feys (1958, pp. 186-189).

Expressions built up out of K and S by application
(that is, enclosing pairs in parentheses) are called
“combinators.” Use of them, and study of their prop-
erties, is called “combinatory logic.” Sometimes these
labels are extended to apply when the expressions are
allowed to contain variables, or indeterminates, as
well as K and S.

Suppose we have two functions F and G (built up
out of K and S, of course) such that by means of (1.1)
and (1.2) we can show that

FX=GX (1.3)

J. Barkley Rosser was
born in Jacksonville,
Florida, in 1907. He
received a Ph.D. from
Princeton University in
1934, and was a fellow
graduate student with
Stephen C. Kleene under
Alonzo Church when the
latter was first presenting
the lambda-calculus.

Rosser was president of the Association for Symbolic
Logic in 1950- 1953.

for each X, or for an indeterminate X. Accordingly, F
and G take the same value whenever they are applied
to each X whatever, and so they ought to be the same
function. That is, we should have

F=G (1.4)

In general, we cannot prove (1.4) by means of (1.1)
and (1.2). Curry (1930) contrived additional axioms
such that we can prove (1.4) whenever (1.3) holds for
each X. A system like this is said to have the exten-
sional property.

Curry added axioms to enable him to prove addi-
tional equalities. Did he go too far, so that now any
two functions can be proved equal to each other? He
did not. Indeed, he was careful to prove a weak form
of consistency, in that many pairs of functions cannot
be proved equal to each other; especially, K = S cannot
be proved.

The system was workable, and illuminated many
properties of functions. For instance, let M be built
up from K, S, and the variable x. One can, using only
K and S, build up a function F such that one can
prove that

Fx = M

by means of (1.1) and (1.2). F turns out to be a mixed-
up combination of K’s and S’s. Just from looking at
F, one would not have the least clue that Fx = M
should hold.

Because F is constructed in order to give the result
Fx = M, it follows that

FN = M[x:=N] (1.5)

in which M[z:=N] means the result of replacing each
occurrence of x in M by N.

Alonzo Church (1932) proposed that the F in ques-
tion be called (Xx(M)), commonly abbreviated to
XxM. Here, M is intentionally part of the name of the
function, so that by inspection we can see what we
would get if we apply the function to x. For his
construct, Church decreed that

(XxM)N = M[x:=N]

which accords exactly with (1.5).

(1.6)

Church was struck with certain similarities between
his new concept and that used in Whitehead and
Russell (1925) for the class of all x’s such that f(x); to
wit, if(x). Because the new concept differed quite
appreciably from class membership, Church moved
the caret from over the x down to the line just to the
left of the x; specifically, A x{(x). Later, for reasons of
typography, an appendage was added to the caret to
produce a lambda; the result was Xxf(x).

338 l Annals of the History of Computing, Volume 6, Number 4, October 1984 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser 9 Lambda-Calculus

Starting with the left side of (1.6) and replacing it
by the right side is called a P-reduction. We are equally
entitled to start with the right side of (1.6) and replace
it by the left side of (1.6)-a P-expansion.

@y = (Xx(X2(x + z)))y = Xz(y + 2) (1.11)

We get the intermediate formula from the left one by
an a-step. So we have

Thus, to produce the CB that we had earlier, Church
would use Xx(Xy(x + y)). By (1.6), we have

@yx = (Xz(y + z))x = y + x (1.12)

(WAY(X + Y))M = XY(A + Y)

By (1.6) again, we have

(1.7)
Equation (1.12) is just what @ is supposed to do.

(Xy(A + y))B = A + B

So, taking Xx(Xy(x + y)) to be @, we have

(1.8)

G3AB = (Xx(Xy(x + y)))AB = A + B (1.9)

by two P-reductions.
The beauty of these manipulations is that at all

If we can get from M to N by a succession of steps,
possibly null-each of which is either an a-step or a
P-reduction or a P-expansion-we say that M is con-
vertible to N; we write M conv N. If M conv N by a
succession of steps, none of which is a ,&expansion,
we say that M is reducible to N, we write M red N.

stages of the process, we can tell by a simple inspection
what the reduced form of 03AB is going to be. What
we have been describing is the famous lambda-calculus
of Church. (Henceforth, we will write LC for “lambda-
calculus.“) We do have to be careful about free and
bound occurrences of variables. In Xy(x + y), the
occurrence of x is free, and both occurrences of y are
bound.

John McCarthy worked several ideas of the LC into
LISP. He clearly recognized procedures as functions of
one argument. In the LC, such functions can be ap-
plied to each other and give such functions when
applied. In LISP, it is possible to apply one procedure
to another, and on occasion get another procedure.

As we said earlier, the K and S, and things built
exclusively of them, are called combinators. Can we
commingle combinators and lambda-expressions?
Yes, indeed, with no trouble whatever. Moreover, var-
iables, or indeterminates, may be freely included.

We have to be careful not to make manipulations
that change free occurrences of a variable into bound
ones. Thus, suppose we write @y. In this configura-
tion, the observed occurrence of y is free. Blind adher-
ence to (1.6) would give

@Y = XY(Y + Y)

so that

e+yz = z + z

This equation is certainly not what is intended for @.
The trouble is that the y, which originally existed as
a free occurrence of a variable in @y, has been put
into Xy(y + y) where its occurrence is now bound.
Actually, when Church enunciated the rule (1.6), he
was careful to impose the restriction that it should
not be used if some variable with free occurrences in
N should have one of those occurrences bound in
M[x:=N]. (In addition, we must now understand
M[r:=N] to mean the result of replacing each free
occurrence of x in M by N.) In order to cope with this
contingency, Church instituted the a-step:

Note that if we replaced S by Xx(Xy(Xz(xz(yz))))
in (1.2), we could still conclude that (1.2) holds by
three P-reductions. The lambda-expression just given
would usually be abbreviated to Xxyz(xz(yz)). So we
can define S by a lambda-expression. Church had
decided that XxM should be formed only when there
are free occurrences of x in M, and thus he could not
get a lambda-expression to correspond to K. It could
be done if we relaxed the requirement that there be at
least one free occurrence of x in M to form XxM.
Hence the LC, as originally set up by Church, seems
a trifle weaker than the combinatory calculi of Schon-
finkel and Curry. For present-day applications, either
would serve perfectly well (this takes some proving)
so that the difference is just something to niggle
over-quite insignificant. Originally, it was not known
that the difference was slight, and Rosser (1935) in-
vented a couple of other combinators, in place of K
and S, with which he set up an exact equivalent of the
LC. Like Curry’s, his system had the extensional
property and a weak form of consistency; hence the
LC also has these attributes.

XyM = Xz(M[y:=z]) (1.10)
The LC (and hence the combinatory calculi) has a

fixed-point theorem. Given a function F, one can find
a @ such that

Note: To avoid confusion of free and bound variables
in &lo), we must have two restrictions: there are no
free occurrences of z in M, and no occurrence of z in
M[y:=z] that resulted from replacing an occurrence of
y in M by z is bound. Now we have

F+ = Cp

Proof Take

+ = 44, where 4 = XxF(xx)

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 339 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser l Lambda-Calculus

There is an obvious functional relationship between
Cp and F, namely

Cp = YF (1.14)

where

Y = ~~((XX~(XX))(XX~(~~))~ (1.15)

Curry and Feys (1958, pp. 177-179) call Y the para-
doxical combinator. The property

F(YF) = YF (1.16)

for each F is noted, which the authors thought to be
paradoxical when they wrote it. The property (1.16)
makes Y useful in some of the modern treatments of
combinators (Turner 1979a, p. 37).

2. A Debacle

The LC and the combinatory calculi were fairly
promptly embedded in systems that had some of the
earlier attributes of logical systems (Church 1932;
Curry 1934a). The results turned out to be inconsis-
tent. This circumstance was first proved in Kleene
and Rosser (1935) by a variation of the Richard par-
adox. Later, Curry (1942) got a simpler proof, related
to the Russell paradox, with the following simple form.
Suppose we have the two familiar logical principles:

PIP (2.1)

G’ 3 (P 3 &)I 3 (P 3 Q) (2.2)

together with modus ponens (if P and P > Q, then Q).
We undertake to prove an arbitrary proposition A. We
construct a Q, such that

@=+3A (2.3)

To do this, we take F = Xx(x > A) in the fixed-point
theorem. By (2.1), we get

Applying (2.3) to the second Cp gives

(a3(+3A)

By (2.2) and modus ponens, we get

@[,>A

By (2.3) reversed, we get

F. B. Fitch (1936; 1952) proposed to avoid the Curry
paradox by weakening the LC (or equivalent combi-
natory calculus) so that the fixed-point theorem fails.
He also weakened modus ponens a bit. He has proved
consistency for his system, but it is much too weak to
be considered as a foundation for mathematics. He
and his students have continued intermittently to the
present to come out with improvements, but the sys-
tem is still extremely weak.

W. Ackermann (1950; 1952; 1953) proposed keeping
the full-strength LC, but crippling implication badly.
He proved the consistency of the system, but it was
hopelessly weak as a foundation for mathematics, and
I know of no recent interest in it.

Curry (1934b; 1936) kept the full-strength combi-
natory calculus, but added a fragmentary theory of
types and a weakened version of implication. He in-
troduced a notion of functionality F, such that if 2 is
a function and X and Y are types, then FX YZ is to
denote that if U is of type X, ZU is of type Y. It
turned out that the “natural” axioms for functionality
lead to a contradiction (Curry 1955); by imposing
suitable restrictions, however, all is well (Curry 1956).
Since then, Curry and his students have made exten-
sive developments. Two major works (Curry and Feys
1958; Curry, Hindley, and Seldin 1972) are landmarks.
Even so, adoption of the system as a foundation for
mathematics has not progressed at all, though the
system has some capability in that direction. A first
attempt to show this appeared in Cogan (1955). Un-
fortunately, the particular dialect of combinatory logic
used by Cogan turned out to be inconsistent (see
Titgemeyer 1961; Bunder 1974). Bunder was able to
reassert the capability and gives an up-to-date discus-
sion (1980).

3. Where Do We Go From Here?

cp

A number of people are continuing to develop the
systems of Fitch and Curry, but there is no likelihood
that either will be adopted as a foundation for math-
ematics. It was originally expected that the LC or a
combinatory calculus should be a part of some system
used as a foundation for mathematics. Surprisingly,
the LC (or a combinatory calculus) has turned out to
be of importance in its own right. So we have to ask
the questions that are asked about any logical system.

1. What about consistency?

By modus ponens and the last two formulas, we get

A

2. What about completeness?
3. What about models?

This debacle is usually referred to as the Curry para-
dox, by analogy with the Russell paradox.

4. What about the connection with computers?
At the time the LC and the combinatory calculi

were being developed, no one asked the fourth ques-
tion. Computers had not yet been invented!

340 l Annals of the History of Computing, Volume 6, Number 4, October 1984 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

4. What About Consistency?

We observed earlier that the LC and the combinatory
calculi have a weak consistency, in that one cannot
prove that all functions are equal to each other. Fairly
early (see Church and Rosser 1936; reproduced in
Church 1941) a considerably stronger form of consis-
tency was proved for the LC, embodied in the Church-
Rosser Theorem (referred to hereafter as C-R-T),
namely:

Suppose X0 red Xi and X0 red X,. Then there is an
X3 such that both Xi red X3 and X, red X3.

A lambda-formula is said to be in normal form if it
has no part on which we can perform a P-reduction.
A lambda-formula X is said to have a normal form Y
if Y is in normal form and X conv Y. We can prove
the following theorem.

If X has a normal form Y, then X red Y and Y is
unique; except possibly for a few cosmetic a-steps.

We’prove the first part of this by induction on the
number of operations in X conv Y. The idea is as
follows. Suppose we go from X to WI by a P-expansion,
next from WI to W2 by a ,&reduction, and finally from
W, to Y by a second P-reduction. Then WI red X and
WI red Y. By C-R-T, there is a W such that X red W
and Y red W. But Y is in normal form, so that in the
reduction from Y to W there cannot be any p-reduc-
tions-only a-steps. Thus, except for cosmetic uses of
a-steps, Y is W, and we have X red W. For uniqueness,
suppose 2 is another normal form of X. It is also a
normal form of Y, and Y red 2. But Y is in normal
form, so the reduction from Y to 2 can consist only
of a-steps.

The lambda-formulas of interest mostly have nor-
mal forms. These normal forms constitute a founda-
tion, on which is erected an elaborate superstructure.
Each normal form has its own individual superstruc-
ture, however, not overlapping the superstructures of
the other normal forms.

Because formulas of the LC can be identified with
formulas of a combinatory calculus and vice versa,
there are superstructures in the combinatory calculus
corresponding to those of the LC.

In (1.1) and (1.2), we can consider going from left
to right as a reduction. We can look for parallels to
C-R-T, we can define normal forms, etc. There was
investigation of these questions.

The original proof of C-R-T was fairly long and
very complicated. M. H. A. Newman (1942) made the
point that the proof was basically topological. He
generalized the universe of discourse and defined a
relation with properties similar to a P-reduction. He
proved a result similar to C-R-T by topological argu-
ments. Curry (1952) generalized the Newman result,

J. B. Rosser l Lambda-Calculus

with the intention that it would be relevant to similar
considerations in the combinatory calculi. Unfortu-
nately, it turned out that neither the Newman result
nor the Curry generalization entailed C-R-T in the
intended systems because the systems did not satisfy
the hypotheses of the key theorems. This was discov-
ered by David E. Schroer, whose counterexample is
recorded in Rosser (1956),* In Schroer (1965) still
further generalizations of the Newman and Curry
results are derived, which indeed do entail C-R-T in
assorted systems. (The Schroer paper is 627 typed
pages; this hardly contributes to the cause of shorter
and simpler proofs of C-R-T.)

Chapter 4 of Curry and Feys (1958) is devoted to a
proof of C-R-T for the LC and to related matters; it
is not recommended for light reading. Hindley (1969;
1974) discusses proofs of C-R-T for the LC and closely
related systems.

These various proofs ail stemmed generally from
the Newman approach, with an emphasis on the to-
pological structure. However, lambda-formulas and
combinators have a marked, though specialized, tree
structure. G. Mitschke (1973) used the tree properties
a bit in deriving a proof of C-R-T, and B. K. Rosen
(1973) went much further. He worked with general
trees and relationships among them. Because lots of
things have a tree structure, his results have applica-
tions beyond proving C-R-T. He applies his results to
the extended McCarthy calculus for recursive detini-
tion (see McCarthy 1960) and verifies a conjecture,in
Morris (1968). He also applies his results to tree
transducers in syntax-directed compiling. With all
that, the proof of C-R-T did not come easy. He had to
prove C-R-T’s for several related systems, and then
derive the C-R-T for the LC by some trickery.

Meanwhile, a genuine simplification for the proof
of C-R-T had come in sight: Martin-Lof (1972). It is
agreed that Martin-Lof got some of his ideas from
lectures by William Tait. An exposition of the proof
of C-R-T according to Tait and Martin-Lof appears
as Appendix 1 in Hindley, Lercher, and Seldin (1972).
A shorter exposition appears in Barendregt (1981, pp.
59-62). We will give what seems to us a still shorter
and more perspicuous proof of C-R-T.

What seems to be the main difficulty of the proof?
Let us look at the minimal case. Suppose XO has two
parts, (Xx WI) VI and (Xx WJ V,. Let X0 red Xi by
performing a P-reduction on (Xx Wi) Vi, for i = 1,2. If
(Xx WI) V, and (Xx W,) V, reside in totally disjoint
parts of X0, there is no trouble. To get X3 we perform
a p-reduction on the (Xz W,) V, that still resides in Xi
and on the (Xx WI) VI that still resides in X2.

Note that the reductions from Xi to X3 and from
X, to X3 each use exactly one p-reduction.

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 341 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser l Lambda-Calculus

Suppose that (Xx W,) V, is part of VI. X2 will contain
(Xx W,) V3, where V3 is the result of a P-reduction of
(Xx W,) V, inside VI. As a candidate for X3, we perform
a ,&reduction on the (X3t WI) V, of X2. How about
getting from X, to X3? Where X0 had (Xx WJ VI, XI
will have WI[x:=VI]. If there had been only one free
occurrence of x in WI, then WI[x:=VI] will contain a
corresponding VI; we change this to V, by a ,&reduc-
tion on (Xp W,) V,, and we have arrived at X3. But W,
may well contain several free occurrences of x. Then
WI[x:=VI] will contain several VI’s. We can change
them one after another to Vs’s, which will result in
X,. But there is no way we can get from X1 to X3 by
a single @-reduction.

In the language of Barendregt (1981, p. 54), p-
reduction does not have the diamond property.

The difficulty is that it may take several /3-reduc-
tions to get from X1 to X3. This should have suggested
working with a string of P-reductions instead of only
one. Why it took more than 30 years for this to occur
to anyone is a mystery.

If we call a P-reduction or a-step a step, then a
string of them will be a walk. But we cannot allow just
any old string. What we are aiming for is that if X0
walk X1 and X0 walk X,, there is an X3 such that
X, walk X3 and Xz walk X3. If we put the right
restrictions on the steps allowed in a walk, we can do
this.

We frame our restrictions for a walk as follows.
1. A walk may contain no steps at all.
2. It may contain a-steps at will.
3. If a number of parts (Xx Wi) Vi fail to overlap at

all, the corresponding P-reductions may be done in
any order.

4. Let (X3t W) V be reduced to W[x:=V] in a P-
reduction of the walk. Inside that part, W[x:=V], no
subsequent P-reductions may be performed in the
walk, and likewise no P-reduction of all of W[x:=V],
in case it has the requisite structure (which it could).
However, a-steps may be performed inside W[x:= V].

The relation F in Barendregt (1981, p. 60) is likely
closely related to our notion of a walk, but it is not
exactly the same. For the key lemma, Barendregt uses
something like induction on the number of steps from
X0 to X, whereas we use induction on the number of
symbols in X0. This makes quite a difference,

We need a lemma, which is about as follows.
Suppose X walk Y. Then X[x:=P] walk Y[x:=P]

by a completely analogous series of P-reductions.
To see this, note that a-steps do nothing to the free

occurrences of x. A P-reduction can rearrange the free
occurrences of x. It can even replicate them, as would
happen if the P-reduction were from (XyS)T to
S[y:=T]; if there are several free occurrences of y in

S, they would each be replaced by T, and any free
occurrences of x in T would be thereby replicated.

If occurrences of P are put for the free occurrences
of 3c in X, a completely analogous series of P-reductions
is possible, and all it will do is rearrange or replicate
the P’s just as the walk from X to Y did for the free
occurrences of x. At the end, we have Y[x:=P] as the
result. The fact that the restrictions for a walk were
satisfied in going from X to Y assures us that they
will be satisfied in going from X[x:=P] to Y[x:=P].

Actually, the lemma is not quite true, because of the
possibility of confusion of free and bound variables.
Before trying the first step from X[x:=P] to Y[x:=P],
we could already be in trouble if some of the free
variables in P became bound when P was put for x in
X. A very close relative of the lemma, sufficient for
our purposes, is true, however.

Lemma. Suppose X walk Y. In X, change all bound
variables by a-steps to a set of distinct variables that
have no occurrences in X or P. This gives X1, for
which there is a Y1 such that X’ walk Y1 by essentially
the same P-reductions as were used for X walk Y.
Then X’[x:=P] walk Y’[x:=P] by a completely anal-
ogous series of P-reductions.

We first note that there will be no need for a-steps
in either the walk from X’ to Y1 or the walk from
Xl[x:=P] to Y’[x:=P]. All possibility of confusion of
bound variables has been sidestepped in changing
from X to X1, and we can now use the argument given
originally.

Note that this lemma is very nearly the same as
proposition 2.1.17(i) in Barendregt (1981, p. 28). It is
also closely related to proposition 3.1.16 (p. 55). In
Barendregt’s terminology, our lemma says that a walk
is substitutive.

Diamond Property

If X0 walk X, and X0 walk X2, there is an X3 such that
X, walk X, and X, walk X3.

In other words, there is an X3 that is the fourth
vertex of a diamond, with a walk along each edge. See
Figure 1 (ahead), where W4 occupies a fourth vertex
to correspond to X,,, Wl, and W, on the three upper
vertices; then Wj occupies a fourth vertex to corre-
spond to W,, W,, and W, on the three upper vertices;
and so on.

The following is a proof by induction on the number
of symbols in XO.

Case 1. If X,, has a single symbol, the diamond
property is immediate.

Case 2. Let X0 be Xx&,. Replace all bound variables
in X0 by distinct variables zl, z2, . . . , zn not occurring
in X0. Hereby X0 is changed to XzlM& Xi will be
XxiMi, for i = 1,2. The P-reductions that carried XO to

342 l Annals 6f the History of Computing, Volume 6, Number 4, October 1984
Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser * Lambda-Calculus

X, will also carry XzIMA to XzlMt, for i = 1,2 and
without involving zl. Clearly we can go from Xi,
namely XxCMI, to XzIM:, for i = 1,2 merely by using
a-steps to change assorted bound variables to 21, 22,
. . .) zn. Since the walks from XzlMA to XzlMt do not
involve zl, there are walks from MA to Mt, for i = 1,2.
Mt has fewer symbols than X0. Consequently, by the
hypothesis of our induction, there must be an MS with
walks from M: to M3, for i = 1,2. Hence there are
walks from X,qMf to Xz1M3, for i = 1,2. Take X3 to be
Xz1M3. As noted earlier, we go from X, to XzlMf by a-
steps alone, for i = 1,2. Preface these to the walks
from XzlM,l to Xz1M3, and we get walks from Xi to X3,
for i = 1,2.

Case 3. Let X0 be MON,.
Subcase 1. X, is M,N, with MO walk M, and No

walk N,, all for i = 1,2. Then there are M3 and N3 with
ML walk M3 and N, walk N3, both for i = 1,2. Take X3
= MzNz.

Subcase 2. MO is Xr liv,. X1 is (XrlWI)N1, where
Xx WO walk Xx1 WI and N,-, walk N1. In getting from X0
to X2 there has been a p-reduction on the “descendant”
of x in Xx W,. By restriction 4, this P-reduction had to
be the last P-reduction in the walk to X2. Hence the
last formula before this reduction had to be
(Xx2W2)N2, which the reduction took to WJxz:=N2].
This formula is therefore X2, except for possible (Y-
steps following the last P-reduction. Consequently,
hx W, walk Xx2W2 and NO walk N2.

Replace all bound variables in X0 by distinct varia-
bles zl, z2, . . . , z, not occurring in X0. Hereby X0 is
changed to (Xzl WA) N& The P-reductions that carried
Xx WO to Xx, W, and NO to N, will also carry Xzl Wh to
XqW,1 and NA to N,1, all for i = 1,2; see the proof in
Case 2 earlier. We can go from Xx, W, to Xzi Wt and
from N, to N,1, both for i = 1,2, merely by using (Y-
steps to change assorted bound variables to zl, z2, . . . ,
Zn.

By familiar reasoning, we see that WA walk W:, for
i = 1,2. By the hypothesis of our induction, there are
W, and N3 such that Wf walk W3, and NI walk N3,
both for i = 1,2. Hereby we infer (X.z,Wf)Nt walk
(Xz,W,)N,, for i = 1,2. We take X, to be W3[z1:=N3].
It follows readily that Xi walk X3. As Xx2Wr and NZ
go to XzlW~ and Ni by a-steps, we can go from X2,
which is W2[x2:=N2] to W$q:=N:] by a-steps. As
Ni walk N3, we can get from Wa[.zl:=Ni] to Wk[z~:=
N3] by a walk consisting of walks on the nonoverlap-
ping N:‘.s. Since we have a walk from Wi to Vv,, our
lemma tells us that there is a walk from Wk[zl:=N~]
to W3[.z1:=N3], which is X3. Now the P-reductions we
took in going from X2 to Wg[z,:=N3] were all on N?s
that had been put for zl’s in W3. None of them can
violate restriction 4 as we walk on down to WJ z1 :=NJ

Figure 1. Diamond Property.

by our lemma from Wi[z,:=N3]. We can therefore
attach this walk to the one from X2 to Wk[z1:=Nd to
conclude that there is a walk from X2 to WZJZ~:=N~],
which is X3.

Subcase 3. Subcase 3 is like Subcase 2, except Xl
and X2 are interchanged. We make suitable inter-
changes in the proof of Subcase 2.

Subcuse 4. MO is Xx W,. In getting from X0 to X,,
for i = 1,2, there has been a P-reduction on the
“descendant” of x in hx: W,. By restriction 4, this ,8-
reduction had to be the last P-reduction in the walk
to X,, for i = 1,2. Hence the last formula before this
reduction had to be (Xx, W,)N,, for i = 1,2, which the
reduction took to W,[x,:=N,]. This formula is there-
fore X,, for i = 1,2, except for possible a-steps following
the last p-reduction. Consequently, X3c WO walk Xx, W,
and NO walk N,, both for i = 1,2.

We now proceed exactly as in Subcase 2, except
that both X1 and X2 are handled in the way we handled
X2 in Subcase 2. We disregard the treatment of X1 as
presented in Subcase 2.

Now we prove something that looks like C-R-T.
If X0 goes to X, by a succession of walks, for i = 1,2,

there is an X, such that X, goes to X3 by a succession
of walks, for i = 1,2.

The proof is so easy that if we carry out the details
for a special case, the whole thing becomes obvious.
Let X0 walk WI walk W2 walk X1 and X0 walk W,
walk X2. By the Diamond Property, we can fill in Wz’s
and X, to be corners in Figure 1.

Because each P-reduction or a-step taken alone is a
walk, C-R-T follows by the previous result.

Although the proof in Newman (1942) failed to
prove the C-R-T for the LC, it does prove a C-R-T for
a fairly general universe of discourse. Some cases of
this have been found to be useful, although they may
not have much in common with the LC; see Book
(1982) and several of the authors cited in bibliographic
references in Book (1982).

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 343 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser l Lambda-Calculus

5. What About Completeness?

At first. sight, it appears that the LC is so weak that
it is absurd even to raise the question. As indicated in
Church (1933) and amplified in Kleene (1935), how-
ever, the positive integers can be defined in the LC. If
IZ is a positive integer, we let

denote the integer n, where there are n f’s inside
parentheses. This makes one form of recursive defi-
nition easy. If F(n) is to be defined by

F(1) = GA (5.1)

F(n -I- l)= G(Fn) (5.2)

we can take F to be

Xn(nGA) (5.3)

With this definition,

Fl red GA

F2 red G(GA)

F3 red G(G(GA))

etc.

There is no zero in this system. We would prefer
the recursive definition to be given by

F(1) = A (5.4)

F(n + 1) = G(Fn) (5.5)

Stephen C. Kleene (1935) worked out a way to do this
and opened the door to still more difficult recursive
definitions. A crucial step was Kleene’s discovery (see
Kleene 1934) that the connection between the LC and
the combinatory calculus established by Rosser (1935)
(but known to Kleene in the fall of 1932) makes
possible definition by cases in the LC under the most
general circumstances.

Kleene discovered more and more definitions of
functions from integers to integers. Some never-pub-
lished investigations by Rosser disclosed so many
more that in the fall of 1933, based on Rosser’s work
and results of Kleene that Church had seen (later
published in Kleene 1935), Church speculated that
every effectively calculable function from positive in-
tegers to positive integers is definable in the LC. It
was known (Church and Rosser 1936) that every func-
tion from positive integers to positive integers that is
definable in the LC is effectively calculable. Finally,
in early 1934, Church gave unequivocal support to
what is now known as “Church’s Thesis” (Church
1935; 1936).

Church’s Thesis

Effectively calculable functions from positive integers
to positive integers are just those definable in the LC.

Because “effectively calculable” is an intuitive no-
tion, Church’s Thesis is not susceptible of proof, but
it does state a strong-and quite unexpected-version
of completeness.

In lectures in 1934, Kurt Glide1 gave a definition of
“general recursive function” (see Davis 1965, pp. 69-
71). He refrained from espousing it as a criterion of
effective calculability until after the results cited next
(including Turing’s work) had appeared. Kleene
(1936) showed that general recursiveness is the same
as being definable in the LC, which lent strong support
to Church’s Thesis.

Independently, Alan M. Turing had been developing
the abstract idea of a computer, the so-called Turing
machine (Turing 1936). He thought that “effectively
calculable” should be taken to be the same as calcul-
able on a Turing machine, but he proved (1937) that
that is the same as being definable in the LC. This
result explains why the lambda-calculus and the com-
binatory calculi can (and do) play such an important
role in the theory of computer programming, and such
matters.

Also independently, Emil L. Post (1936) had devel-
oped ideas similar to those of Turing (Turing pub-
lished first, by a few months). Later, Post (1943)
proposed still another definition of “effectively c;alcul-
able,” which turned out to be equivalent to those
already given. A. A. Markov (1951; 1961) gave yet
another definition, which was also proved to be equiv-
alent, as was a definition by R. M. Smullyan (1961)
using his “elementary formal systems.”

With the development of actual computers, which
are finite approximations for a universal Turing ma-
chine, interest in all these matters has been much
intensified. Kleene and Vesley (1965, p. 3) list 150
contributions to the subject by October 15, 1963. By
now there are far more.

Kleene’s early developments in recursion theory
were of much importance for computing. Now, al-
though he still uses many notations from the LC, he
has diverged far from it into an area that is essentially
of no use in computing-even though active and of
interest to many people.

I think it might be of interest for me to recount,
from a personal view, some of the matters involved in
the development of Church’s Thesis, general recursiv-
ity, and its relation to Church’s Thesis. I am grateful
to Kleene for reading this, and for refreshing my
memory at spots, especially those having particularly
to do with Kleene himself.

344 l Annals of the History of Computing, Volume 6, Number 4, October 1984 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser l Lambda-Calculus

The developments that led to conjecturing the con-
nection between X-definability and effective calcula-
bility were initiated in lectures by Church in the fall
semester of 1931-1932, which Kleene and I attended
(see Church 1933). Church gave the definition of pos-
itive integer expounded earlier, and noted that the
recursive definition set out in (5.1) and (5.2) could be
defined in LC.

matters. After Kleene returned to Princeton on Feb-
ruary 7, 1934, Church looked more closely at the
relation between X-definability and effective calcula-
bility. Soon he decided they were equivalent, and
Kleene named the proposition “Church’s Thesis.”
Church got the thesis into print as soon as possible
(1935; 1936).

In February, immediately after the end of the lec-
tures, Kleene astonished everyone by giving a defini-
tion of the predecessor function in LC.

For the next year and a half, Kleene continued to
find ways to define various kinds of functions in the
LC. The key details appear in Kleene (1935), which
was part of his Ph.D. thesis (presented to Church in
June 1933). I had many discussions about these mat-
ters with Kleene and was quite familiar with the
details. From Kleene’s techniques, Church’s Thesis
should have been obvious in June 1933 to Church,
Kleene, and me. It had apparently not entered our
minds to consider it yet, and none of us suggested it.

Kleene recounts his reaction to Church’s proposal
in his Annds article (Kleene 1981, p. 59). Kleene’s
attempt at a disproof failed, but the attempt was so
illuminating that he “became overnight a supporter of
the thesis.”

Perhaps I was not as convinced by Kleene’s tech-
niques as I should have been. In the fall of 1933 I kept
searching out subtle effectively calculable functions,
and attempting to find functions in the LC to repre-
sent them. Naturally, I succeeded. Kleene had gone to
his mother’s farm in Maine for about seven months
in July 1933, so I did not disclose any of these inves-
tigations to him. Godel was at the Institute for Ad-
vanced Study, but apparently had no interest in the
LC (at that point). Only Church heard of my endeav-
ors. One time, in late 1933, I was telling him about my
latest function in the LC. He remarked that perhaps
every effectively calculable function from positive in-
tegers to positive integers is definable in LC. He did
not say it with any firm conviction. Indeed, I had the
impression that it had just come into his mind from
hearing about my latest function. With the results of
Kleene’s thesis and the investigations I had been
making that fall, I did not see how Church’s suggestion
could possibly fail to be true. In fact, I immediately
berated myself (silently) for not having seen the ob-
vious a month or two before, so that I would have
made that proposition to Church before he made it to
me.

At about the same time, Church proposed Church’s
Thesis to Godel. As noted earlier, Godel knew little
about the LC and rejected the idea (see Kleene 1981,
p. 59). Church challenged Godel to come up with at
least a partially satisfactory definition of effective
calculability. This apparently stimulated Godel to re-
fine an earlier suggestion by Herbrand and produce
the definition of general recursiveness that he pre-
sented in lectures later that spring, cited earlier. His
definition is the one now in general use, although
Kleene published an equivalent rephrasing (1936).

The question had only shortly before come up
whether Church’s system of logic was consistent (it
was not). This question seemed much more overriding
and engaged most of our attention for the rest of the
semester. Indeed, I doubt if either of us again consid-
ered the connection between effective calculability and
X-definability until after Christmas. By that time, it
had become fairly conclusive that Church’s system
was inconsistent, and our thoughts turned to other

Church, Kleene, and I each thought that general
recursivity seemed to embody the idea of effective
calculability, and so each wished to show it equivalent
to X-calculability. Church (1936) has commented
about what transpired then (reproduced in Davis 1965,
pp. 90, 99). Church, Kleene, and I each had pretty
good drafts of a proof ready before the end of the
semester, but by somewhat different methods. There
was enough discussion and interchange of information
during this period that we became convinced of the
equivalence of general recursivity and X-calculability.
Church (1936, footnote 3) gives credit to Kleene for
getting the full proof first, but gives me priority for a
proof of a similar result. Footnote 3 (in Davis 1965,
pp. 90,99) has to be taken as saying that Church and
I made considerable progress to a proof, even though
Kleene got there first, and not that Kleene’s proof (as
given in Kleene 1936) owes anything to Church or me.
There was much discussion and interchange of ideas
at the time, but Kleene’s recollection is that this did
not particularly help him to find his proof. Certainly,
in the proof itself, all difficult points are handled by
citations of results that Kleene had obtained for var-
ious reasons.

With the equivalence of general recursiveness and
X-definability established, Church, Kleene, and I ex-
pected that Code1 would join us in supporting
Church’s Thesis. Godel still had reservations, how-
ever, and it was not until at least two or three years
later, after Turing’s investigations, that Gijdel finally
became a believer (as did Turing also).

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 345 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser l Lambda-Calculus

There have been some objections to Church’s The-
sis. Moschovakis (1968) gives a simultaneous review
of four papers, by Jean Porte, Las& Kalmar, Rozsa
Peter, and Elliott Mendelson, The first three papers
attempt in various ways to discredit Church’s Thesis.
The paper by Mendelson discusses the three papers
and undertakes to show that their criticisms are ill-
founded. In the opinion of the reviewer, he succeeds
quite adequately. I know of no recent attacks on
Church’s Thesis, and it seems to be generally accepted
as an important, if unorthodox, version of complete-
ness far the LG,

and all ordered pairs (/3, b), where p is a finite subset
ofBandbisinB.

The model consists of all subsets of B. For two
members, C and D, of the model, define

(CD) = {b&B 1 (p, b)cC and p C D) (6.1)

To show that this contains a model of the combinatory
calculus, we identify two elements K and S:

K= ita, (P, b)) Ibc a

and Q, p finite subsets of B]

s = I(% 0% (7, b))) I bfm4Pr)

(6.2)

6. What About Models?

A classic theorem says that if a logic is consistent, it
will have a model-indeed a denumerable one. The
LC is so different in structure from the usual logics
that the theorem does not apply to it.

and (Y, 6, y finite subsets of B]

We can verify fairly easily that

(6.3)

Why do we wish a model? If we have a framework
with a lot of structure, and the logic is isomorphic to
some part of the framework, the structure in the
framework can contribute to our understanding of the
logic. We can always manufacture a superficial model
by taking equivalence classes of objects in the logic.
The only structure this model has is forced by the
logic. No additional understanding can come from
studying the structure of the model, and such a model
does little good.

KCD = C (6.4)

SCDE = CE(DE) (6.5)

for all elements of the model. A close relative of the
extensional property holds (see Meyer 1982).

Because the LC is so closely related to the combi-
natory calculi, it is not surprising that something
similar can be put together as a model for the LC.
Meyer (1982) has full details.

7. What About the Connection with Computers?

For a long time, this was the only kind of model
that was found for the LC. Finally, with encourage-
ment from Christopher Strachey, Dana Scott (1970)
hit on a way of making some really useful models.
They could be constructed either in the category of
topological spaces or in the category of lattices. Bar-
endregt (1981) gives a model similar to the Scott one,
but in a still more general framework-namely, the
category of complete partial orders. In one sense, this
is good because we can derive still more properties of
the LC in this general category. Suppose, however,
that we would like just to see a model without having
to learn all the algebra involved in topological spaces,
lattices, or complete partial orders. Some people have
been working in that direction-to get a model without
all the algebraic baggage. (Most references are unpub-
lished; see Plotkin 1972, Engeler 1979, and Meyer
1982.) Albert R. Meyer (1982) gives a fairly complete
and coherent account. He says the model originated
with Plotkin, was improved by Engeler, and was fur-
ther improved by Meyer himself. My account is taken
from the Meyer paper.

The computer connection proceeds in two directions.
We can use computers to manipulate combinators or
formulas of the LC, or we can use properties of com-
binators and the LC to help in programming or to
develop ideas of use for computers.

Looking to the first, an obvious approach would be
to represent the combinators, or formulas of the LC,
as lists or arrays in the computer memory. In fact,
these formulas are tree structures, and might better
be so represented on the computer. Knowing the lo-
cation of only the root of the tree suffices to recon-
struct the entire tree. So the trees (entire formulas)
can be identified by single memory locations, instead
of by elaborate diagrams or linearizations of diagrams.

The idea is simple. Suppose A and B are combina-
tors, and we have put their roots at memory locations
a and b.Then we represent C = (AB) by locating its
root at memory location c; in c we put the ordered pair
of numbers a and b. If we wish to know the structure
of C, we are told to look at location c. There we find
(a, b), which tells us that C has the form (AB), and
that to know the form of A we should look in location
a, and similarly for B.

Start with a nonempty set A; the unit class consist- Besides the convenience in referring to a formula,
ing of the ordered pair (4, 4) will do, where 4 is the this method of representation allows economies of
null class. Enlarge A to the least set B containing A memory which are not possible when a formula is

346 l Annals of the History of Computing, Volume 6, Number 4, October 1984 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser * Lambda-Calculus

represented by a list. For an extreme example, suppose
B = ((AA) (AA)), where A requires 1000 memory
locations for its representation. To represent B as a
list would require four repetitions of the listing of A,
together with attendant parentheses-a total of 4006
locations. With the tree representation, let A have its
root at a; we may still suppose that the entire repre-
sentation of A fills 1000 locations. At some convenient
memory location d, we put (a, a), which denotes D =
(AA). At another empty memory location b, we put
(d, d), which denotes (DD). But (DD) is ((AA)(
= B. Thus, with A represented in 1000 memory loca-
tions, we require only 1002 locations to represent
((AA)(A

Another advantage of the tree representation is that
it lends itself to what is called “lazy evaluation.”
Suppose a part M occurs several times in a formula
X. If X is represented as a list, the several occurrences
of M are each written out in full. Unless extraordinary
measures are taken, each of the occurrences of M will
be evaluated separately, and independently, in the
course of evaluating X. With a tree structure, however,
M will occur only once, but with various pointers
“pointing” to it. Hence it will be evaluated only once.

These and many related matters are taken up by
George W. Petznick (1970). Consider a typical pro-
gram on a computer-say, for computing an approxi-
mation to the square root (two integers: a mantissa
and an exponent). If we input an approximation for a
real number (a mantissa and an exponent), the pro-
gram will generate and output an approximation for
the square root. So the program defines a function.
Naturally, it is a computable function. So (by one of
the equivalences supporting Church’s Thesis) this
function must be expressible by means of a combina-
tory formula. If suitable hardware, or software simu-
lations thereof, is available, the calculation can be
done solely by combinatory manipulations.

Something of the sort had been proposed for
lambda-formulas by P. J. Landin (1965; Steel 1966,
pp. 266-294), who defined and used what he calls
SECD machines. Here he was unavoidably involved
in a difficult problem of handling the complicated
substitutions properly. If he had used combinatory
formulas instead, the problem would be much simpli-
fied. Also, Landin tried to superpose the lambda-
formulas on top of the usual computer software, pro-
ducing a greatly complicated assignment problem. If
he had dispensed with the usual computer software,
and worked only with combinatory formulas stored in
the memory (preferably as trees), the assignment
problem would simply have disappeared.

Petznick’s thesis (1970) showed that it is possible
to design a computer to work exclusively with combi-

Left to right in 1982: J. Barkley Rosser, Annetta Rosser,
Haskell Curry, Virginia Curry, Alonzo Church.

natory formulas, stored as trees. There is no assign-
ment problem, and application takes the place of
substitution. Because application is the basis of the
tree structure, it is handled automatically. The hard-
ware one would have to build to handle this would be
quite simple-or it could be handled with present
hardware by a suitable software simulation.

Petznick’s thesis managed to evade everybody’s at-
tention, and nothing more was done in that area for a
while. After some years, work similar to Petznick’s
(and extending it) began to appear and has quickly
blossomed. It now engages the attention of a consid-
erable number of people, all of whom seem to be quite
unaware of Petznick’s work.

There is quite a ferment of activity just now, and
several papers were presented at the 1982 ACM Sym-
posium on LISP and Functional Programming at
Pittsburgh; a set of proceedings is available (ACM
order number 552820). It would surpass my powers as
a soothsayer to determine what will develop as the
key ideas; perhaps some have not yet emerged.

I will sketch a couple of trains of development, to
give the reader some sort of idea what is happening.
In so doing, I may fail to note something that will be
of major importance, and so fail to give due credit to
those who are working on it.

In Henderson and Morris (1976) appeared an idea
for lazy evaluation. Turner (1979a; 1979b) carried this
forward, and also showed how to condense combina-
tory formulas greatly, thereby alleviating what had
been a problem for Petznick. More on that last point
is given in Hughes (unp.). Two programs for manip-
ulating combinators directly are CRS/l (see Refer-
ences) and SKIM, which was announced in 1980 and is
now being improved by a group at Cambridge Univer-

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 347 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser l Lambda-Calculus

sity. Backus (1978) does not seem to be in the main-
stream of this activity, but he has some quite novel
combinatory functions, and something interesting
may evolve out of his work.

It seems to be now established that operating di-
rectly on computers in combinatory format is not only
feasible, but has some advantages. Even more useful
results may be just around the corner. Or they may
have already been announced without my appreciating
their worth.

REFERENCES’

Ackermann, W. 1950. Widerspruchsfreier Aufbau der Logik
I. Typenfreies System ohne Tertium non datur. J. Symb.
Logic 15, 33-57.

Ackermann, W. 1952; 1953. Widerspruchsfreier Aufbau ei-
ner typenfreien Logik. I. Math. Zeit. 55, 364-384; II, 57,
155-166.

Backus, J. 1978. Can programming be liberated from the
von Neumann style? A functional style and its algebra of
programs. CACM 21,613-641.

Barendregt, H. P. 1981. The Lambda Calculus. Amsterdam,
North-Holland.

Book, R. V. 1982. Confluent and other types of Thue sys-
tems. JACM 29,171-182.

Bunder, M. W. 1974. Some inconsistencies in illative com-
binatory logic. Zeit. Math. Logik Grundlagen Math. 20,
199-201.

Bunder, M. W. 1980. “The Naturalness of Illative Combi-
natory Logic as a Basis for Mathematics.” In J. P. Seldin,
and J. R. Hindley (eds.), to H. B. Curry, Essays on
Combinatory Logic, Lambda Calculus and Formalism, New
York, Academic Press, pp. 55-64.

Church, A. 1932. A set of postulates for the foundation of
logic. Annals of Math. 33,2nd series, 346-366.

Church, A. 1933. A set of postulates for the foundation of
logic (second paper). Annals of Math. 34, 2nd series, 839-
864.

Church, A. 1935. An abstract. Bull. AMS 41, 333.
Church, A. 1936. An unsolvable problem of elementary

number theory. Amer. J. Math. 58,345-363.
Church, A. 1941. “The Calculi of Lambda-Conversion.” An-

nals of Math. Studies 6, Princeton, N.J., Princeton Univ.
Press; 2nd ed., 1951.

Church, A., and J. B. Rosser. 1936. Some properties of
conversion. Trans. Amer. Math. Sot. 39, 472-482.

Cogan, E. J. 1955. A formalization of the theory of sets from
the point of view of combinatory logic. Zeit. Math. Logik
Grundlagen Math. 1,198-240.

CRS/l specification, Beale Electronic Systems Ltd., Wrays-
bury, U.K.

Curry, H. B. 1929. An analysis of logical substitution. Amer.
J. -Math. 51,363-384.

Curry, H. B. 1930. Grundlagen der kombinatorischen Logik.
Amer. J. Math. 52, 509-536.

1 Copies of some unpublished theses referenced here can be obtained
from University Microfilms International, 300 N. Zeeb Road, Ann
Arbor, MI 48106.

Currv. H. B. 1934a. Some nronerties of eoualitv and imnli-
caiion in combinatory iogfc. Annals if Math. 35, 2nd
series, 849-860.

Curry, H. B. 19346. Functionality in combinatory logic. Proc.
Nat. Acad. Sci. 20, 584-590.

Curry, H. B. 1936. First properties of functionality in com-
binatory logic. Tohoku Math. J. 41,371-401.

Curry, H. B. 1942. The inconsistency of certain formal logics.
J. Symb. Logic 7, 115-117.

Curry, H. B. 1952. A new proof of the Church-Rosser theo-
rem. Nederl. Akad. Wetensch. 55, Ser. A (Indag. Math.
14), 16-23.

Curry, H. B. 1955. The inconsistency of the full theory of
combinatory functionality (Abstract). J. Symb. Logic 20,
91.

Curry, H. B. 1956. Consistency of the theory of functionality
(Abstract). J. Symb. Logic 21, 110.

Curry, H. B., and R. Feys. 1958. Combinatory Logic. Am-
sterdam, North-Holland.

Curry, H. B., J. R. Hindley, and J. P. Seldin. 1972. Combi-
natory Logic. Vol. II, Amsterdam, North-Holland.

Davis, M. 1965. The Undecidable. New York, Raven Press.
Engeler, E. (ed.). 1971. Symposium on semantics of algo-

rithmic languages. Lecture Notes in Mathematics, No. 188,
New York, Springer-Verlag.

Engeler, E. 1979. Algebras and combinators. Berichte des
Inst. fiir Informatik, No. 32, ETH Zurich, 12 pp.

Fitch, F. B. 1936. A system of formal logic without an
analogue to the Curry W operator. J. Symb. Logic 1, 92-
100.

Fitch, F. B. 1952. Symbolic Logic, An Introduction. New
York, Ronald Press.

Henderson, P., and J. H. Morris. 1976. A lazy evaluator.
Proc. 3d ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages, Atlanta, pp. 95-103.

Hindley, R. 1969. An abstract form of the Church-Rosser
Theorem. I. J. Symb. Logic 34, 545-560.

Hindley, R. 1974. An abstract Church-Rosser Theorem. II:
Applications. J. Symb. Logic 39, 1-21.

Hindley, J. R., B. Lercher, and J. P. Seldin. 1972. Introduc-
tion to Combinatory Logic. London Mathematical Society
Lecture Note Series 7, Cambridge, Cambridge Univ. Press.

Hughes, R. J. M. Unp. “Graph-Reduction with Supercom-
binators.” Oxford University Programming Research
Group Technical Monograph PRG-28.

Kleene, S. C. 1934. Proof by cases in formal logic. Annals of
Math. 35, 2nd series, 529-544.

Kleene, S. C. 1935. A theory of positive integers in formal
logic. Amer. J. Math. 57, 153-173, 219-244.

Kleene, S. C. 1936. X-definability and recursiveness. Duke
Math. J. 2,340-353.

Kleene, S. C. January 1981. Origins of recursive function
theory. Annals of the History of Computing 3, 1,52-67.

Kleene, S. C., and J. B. Rosser. 1935. The inconsistency of
certain formal logics. Annals of Math. 36,2nd series, 630-
636.

Kleene, S. C., and R. E. Vesley. 1965. The Foundations of
Intuition&z Mathematics. Amsterdam, North-Holland.

Landin, P. J. 1965. A correspondence between ALGOL 60
and Church’s lambda-notation. CACM 8, 89-101, 158-
165.

Markov, A. A. 1951. Teoriya algorifmov. Trudy Mat. Inst.
Steklou 38, 176-189. Trans.: “Theory of algorithms,” No.
OTS 60-51085, US. Department of Commerce, Office of
Technical Services, 1961.

348 l Annals of the History of Computing, Volume 6, Number 4, October 1964 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

J. B. Rosser l Lambda-Calculus

Martin-Liif, P. 1972. “An intuitionistic theory of types.” Rosser, J. B. 1956. Review of Curry (1952), “A new proof of
University of Stockholm, manuscript. the Church-Rosser theorem.” J. Symb. Logic 21,377.

McCarthy, J. 1960. Recursive functions of symbolic expres- Schonfinkel, M. 1924. Uber die Bausteine der mathema-
sions and their computation by machine. CACM 3, 184- tischen Logik. Math. Ann. 92, 305-316.
195. Schroer, D. E. 1965. “The Church-Rosser Theorem.” Ph.D.

Meyer, A. R. 1982. What is a model of the lambda calculus? thesis, Cornell Univ. University Microfilms Publication
Information and Control 52, 87-122. 66-41.

Mitschke, G. 1973. Ein algebraischer Beweis fur das Church- Scott, D. 1970. Outline of a mathematical theory of compu-
Rosser Theorem. Archiv. fiir mathematische Logik 15, tation. Proc. 4th Ann. Princeton Conf. on Information
146-157. Sciences and Systems, pp. 169-176. (Also in Engeler 1971.)

Morris, J. H., Jr. 1968. “Lambda-Calculus Models of Pro- Smullyan, R. M. 1961. Theory of formal systems. Annals of

gramming Languages.” MAC-TR-57, MIT Project MAC, Math. Studies 47, Princeton Univ. Press.
Cambridge. Steel, J. B., Jr. (ed.). 1966. Formal language description

Moschovakis, Y. N. 1968. A review. J. Symb. Logic 33, 471- languages for computer programming. Proc. IFIP Working
472. Conference on Formal Language Description Languages,

Newman, M. H. A. 1942. On theories with a combinatorial Amsterdam, North-Holland.
definition of “equivalence.” Annals of Math. 43,2nd series, Titgemeyer, R. 1961. ijber einen Widerspruch in Cogan’s
223-243. Darstellung der Mengenlehre, Zeit. Math. Logik Grundla-

Petznick, G. W. 1970. “Combinatory Programming.” Ph.D. gen Math. 7, 161-163.
thesis, Madison, Univ. of Wisconsin. University Micro- Turing, A. M. 1936; 1937. On computable numbers, with an
films Publication 70-24812. application to the Entscheidungsproblem. Proc. London

Plotkin, G. D. 1972. “A Set-Theoretical Definition of Appli- Math. Sot. 42, 230-265; A correction, 43, 544-546.
cation.” Memorandum MIP-R-95, School of Artificial In- Turing, A. M. 1937. Computability and X-definability. J.
telligence, Univ. of Edinburgh, 32 pp. Symb. Logic 2, 153-163.

Post, E. L. 1936. Finite combinatory processes. Formulation Turner, D. A. 1979a. A new implementation technique for
I. J. Symb. Logic 1, 103-105. applicative languages. Software-Practice and Experience

Post, E. L. 1943. Formal reductions of the general combi- 9, 31-49.
natorial decision problem. Amer. J. Math. 65, 197-215. Turner, D. A. 19796. Another algorithm for bracket abstrac-

Rosen, B. K. 1973. Tree manipulation systems and Church- tion. J. Symb. Logic 44, 267-270.
Rosser theorems. JACM 20, 160-187. van Heijenoort, J. 1967. From Frege to Godel. Cambridge,

Rosser, J. B. 1935. A mathematical logic without variables. Harvard Univ. Press.
Annals of Math. 36, 2nd series, 127-150; Duke Math. J. 1, Whitehead, A. N., and B. Russell. 1925. Principia Mathe-
328-355. matica. Cambridge, Cambridge Univ. Press.

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 349 Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 16,2024 at 14:05:00 UTC from IEEE Xplore. Restrictions apply.

