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0. Introduction 

In this essay yet another attempt at an exposition of why the A-calculus 
has models is made. The A-calculus was one of the first areas of research of 
Professor Kleene, an area in which the experience he gained was surely 
beneficial in his later development of recursive function theory. In what 
transpires below, the dialogue will be found to involve Professor Curry 
rather more than Kleene, since the former has written more extensively on 
the foundational aspects of combinatory logic. Nevertheless the early 
works of Church, Curry, Kleene, and Rosser were very closely integrated, 
and the contributions of Kleene were essential. Thus, the topic does not 
seem inappropriate to the occasioh. 

Section 1 provides a very short historical summary, and it will be found 
that there is considerable overlap with CURRY (1979), which is also in this 
volume. An earlier version of Professor Curry’s paper was in any case the 
incentive to write the present paper, and the reader should consult Curry’s 
contribution for further references and philosophical remarks. 

In Section 2 there is a review of the theory of functions and relations as 
sets leading up to the important notion of a continuous set mapping. In 
Section 3 the problem of the self-application of a function to itself as an 
argument is discussed from a new angle, and it is shown that-under the 
reduction of continuous set mappings to multi-relations-a coherent set- 
theoretical definition is indeed possible. The model (essentially due to 
PLOTKIN (1972)) of the basic laws of A-calculus thus results. 

Section 4 relates self-application to recursion by the proof of David 
Park‘s Theorem to the effect that the least fixed-point operator and the 
“paradoxical” combinator are the same in a wide class of well-behaved 
models. The connection thus engendered to recursion theory (r.e. sets) is 
outlined, and the section concludes with some remarks on recent results 
about ill-behaved models and on induction principles. 
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Section 5 returns to the theme of type theory, and a construction of an 
(q)-model with fewer type distinctions is presented, There is a brief 
discussion of how to introduce more type distinctions into models uia 
equivalence relations, a topic deserving further study. Finally, Section 6 
takes up various points of philosophical disagreement with Professor Curry 
which can be discussed in the light of the construction presented here. 
There are many questions remaining, some of which are touched upon. An 
appendix exhibits a moderately strong axiomatic theory suggested by the 
models that may help the reader see the difference between the originally 
proposed calculus and the outlook developed by the author. 

1. Some historical background 

Priority for the invention of the type-free calculus of functions (puce 
Frege) goes to Moses Schonfinkel in a lecture at Gottingen in December 
1920. This talk was written up by H. Behmann and published as SCHON- 
FINKEL (1924); a translation with a useful introduction by W.V. Quine is to 
be found in van HEIJENOORT (1967, pp. 355-366). Sometime around 
1926-1927 as a graduate student, Haskell Curry in an analysis of “the 
process of substitution” independently discovered .the combinators; but 
then in 1927 in “a literature search” he came across the Schonfinkel paper. 
Full credit is apportioned by him to Schonfinkel in his thesis (CURRY, 
1930). According to CURRY ( 1  968), Alonzo Church prepared a manuscript 
in 1928 on a system with A-abstraction, and the publication, CHURCH 
(1932), indicates that it was work done as a National Research Fellow 
1928-1929. In this paper on p. 352 and in nearly the same words in 
CHURCH (1941, pp. 3-4) we find Schonfinkel only mentioned in connec- 
tion with the reduction of multiple-argument functions to monadic func- 
tions. Of course, it is fair to say that Schonfinkel was concerned merely 
with a kind of definitional reduction of primitives, and he proposed no 
posfulates from which properties of these general functions could be 
derived. Such postulates were the contribution of Curry and Church. 

Unfortunately Church, to my knowledge, has never explained as fully as 
Curry has how he was led to his theory. He must have been strongly 
influenced by Frege (via Russell), and he hoped to solve the para- 
doxes-not through the theory of types, but by the rejection of the law of 
the excluded middle. In CHURCH (1932, p. 347), it is stated that such 
combinations as occur in the Russell Paradox (namely, (Ax not (~ (x ) ) )  (Ax. 
not (~(x))), which converts to its own negation) simply fail ro have a truth 
ualue. Thus, we do not have here an intuitionistic theory, but a failure of 
excluded middle because functions are only partially defined. Alas, in 
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KLEENE and ROSSER (1935) it was shown that Church’s system (which was 
employed by Kleene in KLEENE (1934) (written in 1933) and his thesis, 
KLEENE (1935) (accepted in September, 1933)) is inconsistent. The proof 
was later very much simplified by Curry and can be found in CURRY and 
FEYS (1958, pp. 258-260). It applies to various systems proposed by Curry, 
also, but not to his thesis, which is just the “equational” theory of 
combinators. This is essentially the system of CHURCH (1941), and the 
“system of symbolic logic” in that monograph is condensed to a very few 
pages ($21, pp. 68-71). The consistency of these systems is very forcibly 
demonstrated by the well-known theorem of CHURCH and ROSSER (1936). 

The connections between the systems of Curry and Church were spelled 
out in his thesis by Barkley Rosser in ROSSER (1935) (written in 1933), who 
emphasized particularly the elimination of variables. This theme was also 
taken up by Quine in QUINE (1936) and again.in QUINE (1971). It seems 
very strange to me that in his description of the method of Schonfinkel, 
QUINE (1971) does not mention the problem of consistency. He says (pp. 

“Schonfinkel was the first to reduce analysis to algebra. He was the first to analyze 
the variable, by showing how to translate it contextually into constant terms. But his 
treatment is less pure than one could wish; it analyzes the variable only in combina- 
tion with a function theory that is in effect general set theory.” 

But an inconsistent set theory it is as soon as we try to give axioms of the 
usual sort! All later attempts have to make strong restrictions to get 
anything like a workable set theory. None of these systems are, in my own 
opinion, particularly natural or beautiful; I do not attempt to catalogue 
them at this point, therefore-though some further comments are given in 
the last section of the paper. At this stage it seems fair to say that the 
model theory of these systems is certainly not very well developed. Refer- 
ences and less negative discussion can be found in CURRY (1979) and 
SELDIN (1980). 

For the equational systems proposed by Curry and Church the con- 
sistency proof via the Church-Rosser Theorem is not a great comfort to 
my mind. As with many proof-theoretic arguments, the result is very 
sensitive to the exact formulation of the rules. Thus, in a note, KLOP (1977) 
(see also KLOP (1979)), it is shown that if we extend the usual system by, 
say, surjective pairing functions, then the Church-Rosser Theorem no 
longer holds. Such an extension is so “natural” in the orignal style of 
Schonfinkel, that this result looks very unfortunate. Of course, someone 
may formulate some modified syntactical property of reduction that will 
imply that not all terms are interconvertible, but I do not think any such 
argument has yet been published. There is, however, a consistency proof 
by models (cf. Scorr  (1977), which Klop does not seem to know about) 

8-9). 
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which allows certain extensions: namely, by the properties of anything that 
exists in the model. And this brings us to the problem of models and their 
place in the discussion. 

Historically my first model for the A-calculus was discovered in 1969 and 
details were provided in SCOTT (1972) (written in 1971). What I have called 
the “graph model” was found by Gorden Plotkin and is given in PLOTKIN 
(1972). It was rediscovered by me in 1973, and a simplified version-with 
proper credit to Plotkin-is found with rather full proofs in SCOTT (1976), 
which also contains many historical remarks and many references. Motiva- 
tion for these discoveries is, it is hoped, very fully exposed in SCOTT (1977) 
and SCOTT (1977a). The two kinds of models are not unrelated, but we 
shall not be able to go into details here. The graph model was in effect 
introduced twice earlier in recursion theory quite explicitly but at the time 
not identified as a model (see the discussion of enumeration operators in 
SCOTT (1976, pp. 575 ff.)). This failure is an interesting case history in the 
psychology of discovery. On this score we find in CURRY (1979) the 
following closing passage: 

“The history of combinatory logc shows that progress can result from the interac- 
tion of different philosophies. One who, as I do, takes an empirical view of mathemat- 
ics and logic, in the sense that our intuitions are capable of evolution, and who prefers 
constructive methods, would never discover the models which Scott proposed. On the 
other hand, it is doubtful if anyone, with what seems to be Scott’s philosophy, would 
have discovered combinatory logic. Both of these approaches have added to the depth 
of our understanding, and their interaction has produced more than either would have 
done.” 

The last sentence is very kind, but I am afraid I cannot agree with all of 
what was said before that. In the first place, the models are constructive. In 
the second place, as an intellectual exercise-even though the combinators 
are some 12 years older than I am (I was born in 1932) and we cannot 
change the past-I think I can defend “my philosophy” in a way that will 
show how they and their laws (in the form of the graph model) could have 
been discovered by the extension of known elementary ideas-ideas cer- 
tainly easily understandable in 1928 when Curry and Church were at work 
on their first systems. 

As a sidelight on the question of discovery, I only recently noticed this 
passage in WHITEHEAD and RUSSELL (1910, p.280): 

“Again, let us denote by ‘ x n’ the relation of rn to m x n; then if we denote by 
‘ N C ’  the class of all cardinal numbers, x n “ N C  will denote all numbers that result 
from multiplying a cardinal number by n, i.e., all multiples of n.  Thus, e.g., x 2”NC 
will be the class of all even numbers.” 

These remarks were included merely for the sake of illustration of what 
happens when we take the image of a class under a function; however, if 
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anyone had been thinking of a general theory of functions, he would have 
noticed here how a binary function was reduced to one-place functions 
(m X n = X (n)(m)). But no one as far as I know did think of that rather 
simple point before Schonfinkel, who was instead motivated by the idea of 
having something like a Sheffer-stroke operator for predicate calculus. Did 
he read Principia? We cannot hope to know at this distance in time (for a 
little more information on Schonfinkel’s life, see the review KLINE (1951)); 
and since he did not write his paper himself, we cannot know what 
references to the literature he would have made. 

2. Some thoughts on functions 

What functions are there? Often a representation helps in seeing in 
simpler terms why certain functions exist; we do not need to claim, 
however, that the representation embodies the essence of the function 
concept-it is just used to establish possibility. For example, power series 
can show that a function like ex is well-defined, differentiable, and that it 
satisfies its differential equation, (Other properties llke being one-one onto 
the positive reals or satisfying ex+Y =ex X I=“, though elementary, are 
perhaps not instantly recognizable from this definition.) But not all func- 
tions have power-series expansions. It  may even be the case that the 
difficulties about convergence led rather directly in the 19th century to a 
more abstract notion of function and, step by step, to the “logical 
monsters” deplored by PoincarC. 

From particular functions one goes on to functions in general-and to 
spaces of functions. Who first suggested that a function could be regarded 
as a set of ordered pairs? By 1914 both Wiener and Hausdorff were doing 
just that (for relations as well as functions and with pairs reduced to sets as 
well), but I do not find any earlier references in their works or in some 
other books I consulted. It is not a very important historical question for 
our discussion, however, since it is certain that by 1914 functions as 
abstract objects were well understood. I stress this because I wish to argue 
that even a set-theoretical discovery of A-calculus would have been not 
only possible but even well motivated at an early state. That it was not 
discovered this way is no argument against my thesis, because many things 
remain undiscovered even long after all the essential ingredients are 
available. 

In the discussion below we employ the common functional notation 
y = F(x)  to indicate that the point x is mapped to the point y under the 
function F. For simplicity, we suppose that both x and y belong to the 
same set A. For subsets X, Y L A ,  as also write Y = F ( X )  to mean that Y is 
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the image of the set X under the mapping F. (See formula (1) below.) In 
the Principia the notation was F’x  and F “ X ,  respectively, because the 
image of a set was regarded as the plural of the image of a point. 

Formally we define set images by: 

(1) F( x ) = { y 13 x E x. y = F( x )  } . 
It may seem unrigorous not to distinguish notationally between F(x)  and 
F ( X ) ,  but since we are not at this point worrying about a theory of sets, we 
simply imagine A as fixed for the time being. Further, without loss of 
generality, we could stipulate that A and its power set are disjoint; hence, 
there need be no ambiguity between x E A and X r A .  

Eq. (1) is a particular case of the image under a relation. Thus, if R is a 
binary relation between elements of A ,  we can define: 

(2) 

where, as always, the variables have their obvious ranges: x , y  E A  and 
X r A .  (This is meant to correspond to Principia, Definition *37.10; and it 
is in any case standard.) If we like, we can think of R as a multi-valued 
function; that is, even when X = { x } ,  the image R ( { x } )  can be “plural”. 
For single-valued functions, it is obvious that 

R ( X )  = { y13x E X . y R x } ,  

y = F ( x )  iff { y } = F ( { x } ) .  

Now even for relations R ,  the correspondence X w R ( X )  is a function on 
the power set of A (with values in the same set of sets). We should ask: 
“What kind of a function is this?” The answer is well-known (though I 
could not find it in the nearly endless list of formulae in the Principia). 
Such functions are distributive in the sense that they distribute over all 
unions of sets. Since every set is the union of its singleton subsets, this 
comes down to: 

(3) R ( V =  w { R ( { x } ) l x E X } .  

Any correspondence satisfying (3) is distributive. If a mapping on sets 
satisfies (3), then we can define a relation between points by: 

(4) y R x  iff y E R ( { x } ) .  

Then in view of (3), the defined meaning of R ( X )  in (2) is the same as the 
given meaning of R ( X )  as a set mapping. We can summarue: 

Proposition. There is a one-one correspondence of interdefinability between 
binary (point) relations and distributive set mappings provided by formulae (2) 
and (4). 

Even if this simple theorem is not in Principia, the authors (as well as 
Wiener, Jourdain, Hardy, etc.) would have certainly understood it at once. 
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It is time now for a new idea. Let us recall first how relations are 
reduced to sets of ordered pairs. We use the notation ( x , y )  for pairs and 
A* = A X A for the Cartesian product. A relation is just a subset R c A' and 
y R x  means the same as ( y , x )  E R. The question is: "What should we say 
about n-ary relations?" Using the notation (xo,xl,. . . ,xn-  for n-tuples 
and A" for the n-fold Cartesian product, we define the set of all finite 
sequences by: 

W 

A * =  u A " .  
n = O  

( 5 )  

(The case n = O  has A'= {( )}, where () is the empv tuple.) 
An n-ary relation is a subset S L A  ". It seems reasonable to call a subset 

P LA*  a multi-relation. The new idea has to do with how to generalize 
formula (2) for the image. This is one such way: 
(6) P ( X ) = ( y 1 3 n 3 x 1  )...) x,EX. ( y , x ,  )...) x,) E P } .  

In case P C A Z  (and we agree that the various A" are pairwise disjoint), 
then (6)  reduces to (2) exactly-provided we substitute P for R in (2). In 
case P L A  " + I ,  then P is an ( n  + 1)-ary relation; formula (6) could be said 
to define the image of X " ,  if we regard P as a multi-valued mapping where 
(xl, ..., x,,)wy. We might wish to define more generally the image of 
XI x X ,  x . - x X,,, where the n sets are allowed to be distinct, but it is 
useful enough to stick to the one-place set mapping in (6) for many 
purposes. 

What is achieved by this new definition? In the case of binary relations, 
we had y E R ( X )  just in case there is one element x E X to which y is 
R-related. In the case of multi-relations, y E P ( X )  requires a finite subset 
{xl ,..., x f l }  C X  with y P-related to (xl ,..., x,). Clearly then the mapping 
XHP(X) need not be distributive, because we might have y E 
P ( { x , ,  ..., x,,}) but y ~ P ( { x , } )  for 1 <i<n. But nevertheless the mapping 
does have a special property which generalizes (3): 

(7) 
We call such functions from sets to sets continuous, because a "finite 
approximation" E c P ( X )  is already determined as being true by a finite 
approximation E C X where E C P( E ) .  In fact, the biconditional 

P ( X ) =  u { P ( E ) J E  C X ,  E finite}. 

V X V E ' [  E 1 c P ( X ) @ 3 E  L X .  E ' C P ( E ) ]  

is equivalent to the validity of (7) for all X cA, provided we restrict the 
ranges of the variables El and E to finite subsets of A .  As another 
characterization of continuous set mappings, we might mention that they 
are exactly the ones that distribute over directed unions of sets (equiv- 
alently: over unions of chains of sets). But (7) as a definition will be 
sufficient for our purposes. 
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Just as with binary relations, if we have a giuen continuous set mapping 
P ,  then we can define a multi-relation P by: 

(8) ( y , x ,  ,..., x , , ) E P  iff y ~ P ( { x  ,,..., x, ,} ) .  

As before, in view of (7), the P ( X )  defined by (6) will be equal to the given 
P ( X ) .  

A small point of difference: every P L A *  determines a continuous set 
mapping, and every continuous map is obtained in this way. However, 
different P’s may determine the same map. (Thus, whether ( ) E P is of no 
moment as empty sequences do not figure in (6) ;  for greater regularity and 
for a later application we will assume that (8) allows ( ) E P.)  There is not, 
therefore, a one-one correspondence between continuous set mappings 
and subsets P c A *. In order to regain the uniqueness we had with binary 
relations, we need to require that the subset P L A  * satisfy a certain 
“fullness” condition: 

(9) ( ) E P and whenever ( y , x , ,  . . . , x, , )  E P 

and {~l,...,~,,}C{~l,...,~k}, then ( y , y  ,,..., y k ) E P .  

Condition (9) makes P maximal among the subsets of A* determining the 
desired continuous set mapping. 

There is still the question: “Why are continuous set mappings interest- 
ing?” The answer is quite pleasant. In TARSKI (1930) (written in 1928), 
condition (7) is given exactly is his Axiom 4 on the abstract properties of 
the consequence relation. Of course, we are not assuming here the special 
properties of a closure operator, where additionally 

x c P ( X )  = P ( P ( X ) ) ,  

since these are not even true for relational images (unless the relation is 
special). But closure operators can provide fine examples of continuous 
mappings. Aside from the. set of logical consequences of a set of sentences, 
other familiar algebraic examples of continuous closure operators would 
be, say, to let P ( X )  be the subgroup of A generated by X in the case that 
the set A carries the structure of a group. Then P would satisfy the above 
extra conditions as a set mapping. 

It does not seem at all far fetched to suggest that in 1928 a proposed 
Master’s thesis could have had the topic of investigating the theory of 
arbitrary continuous set mappings. I can see in my mind’s eye exactly the 
kind of paper that would have been submitted to Fundamenta Mathemati- 
cue. Here is a summary of results and definitions: 

A continuous set function is defined as one satisfving formula (7) 
above; an alternative definition states that the function preserves directed 
unions of sets. 

(i) 
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(ii) Continuity in several variables is defined as continuity in each 
variable separately. 

(iii) A s  a side remark it is pointed out that P A ,  the power set of A ,  has a 
topologv with the sets of the form { X A is finite, as a 
basis for the open sets; continuity as defined in (i) and (ii) is proved to be the 
same as topological continuity on P A  and on the product space (PA)” .  This 
remark would not actually be needed in the sequel, but it helps show why the 
concepts are natural. 

The composition of continuous functions (in any number of variables) 
is continuous; this of course follows from (iii), but a direct argument is very 
elementary. 

A I E X } ,  where E 

(iv) 

(v) The notion of A *  and a multi-relation is defined. 
(vi) The image of a set under a multi-relation is defined and it is noted 

that the mapping is continuous. 
(vii) It is proved that every continuous function is obtainable from a 

multi-relation, and in fact there is a maximal such (cf. formula (8)). 
(viii) The maximal multi-relations in (vii) are proved to be exactly the 

‘‘full” relations in the sense of formula (9). 

As it stands, up to this point, the paper seems rather thin and even might 
not have been accepted for publication. In the next section we turn to 
some additional ideas that could have been added to it to give it somewhat 
greater depth. 

By the way, a simple observation as to why continuity is better than 
distributivity (the b’inary-relation case) concerns functions of several vari- 
ables. Suppose F(X,  Y )  is distributive separately in X and in Y .  Then the 
composition (with identity functions) resulting in F(X, X )  is continuous but 
not necessarily distributive; further compositions like F( F ( X ,  X ) ,  F ( X ,  X ) )  
remain continuous but are even further from being distributive. The reason 
is that the condition z E F ( X , X )  though equivalent to 3 x  E X 3 y  E X .  
z E F({ x } ,  { y } ) ,  is not necessarily equivalent to 3 x  EX. z E F({ x } ,  { x}). 
By taking the point-wise union of continuous functions we get other 
continuous functions that are even less distributive. This remark shows 
that a study of set mappings might have suggested the notion of continuity 
independently of the well-known examples of “algebraic” closure opera- 
tions. 

3. Some reflections on self-application and combinators 

As in SCOTT (1973) I recall a passage from the introduction to CHURCH 

“In particular it is not excluded that one of the elements of the range of arguments 
of a function f should be the function f itself. This possibility has been frequently 

(1941): 
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denied, and indeed, if a function is defined as a correspondence between two 
previously given ranges, the reason for the denial is clear. Here, however, we regard 
the operation or rule of correspondence, which constitutes the function, as being first 
given, and the range of arguments then determined as consisting of the things to which 
the operation is applicable. This is a departure which is natural in passing from 
consideration of functions in a special domain to the consideration of functions in 
general, and it  finds support in consistency theorems which will be proved below.” 

The philosophical stance assumed by Church does not fit so very well to 
the A-K-calculus where every application has to be taken as meaningful. 
(An interesting discussion of the differences between the A-I-calculus and 
the A-K-calculus will be found in BARENDREGT (1980).) If we think instead 
of partial recursive functions, where rules are programs and where pro- 
grams have code numbers, then, following Kleene, an application { e)(n)  
may or may not be “meaningful” (that is, the Turing machine need not 
halt). There are many cases, however, where { e ) ( e )  does converge, and 
such self-applications are quite meaningful. The drawback (if it is one) is 
that the method of code numbers takes functions in intension. It may well 
happen that { n }  = { m} as partial recursive functions, but { e}(n)# { e}(m).  
Many of the calculi considered by Church and Curry take the function 
concept to be extensional, and it is rather more difficult in such a context 
to be precise about the meaning of “rule of correspondence”. It is really 
not the least bit fair of Church in the above passage to invoke the 
consistency proof via the Church-Rosser Theorem, since this gives no 
intuitive justification of the choice of reduction rules which are given in 
advance. 

There are nevertheless many theories of functions in extension where 
self-application is no trouble whatsoever. To have such a model %,just 
let % = R, the real numbers. Define application as addition, so that 
x ( y ) = x + y .  This is the model for a “theory” of translations. In GX, the 
axiom that has Vz. x(z)  = y ( z )  always implying x = y  is trivially valid. The 
only difficulty with this model is that so few functions from % into % 
are represented by elements of % (“few”, despite the fact that there are a 
continuum number of distinct translations). For example, even though 
x(x) is always meaningful, this is a function not represented in the model; 
that is, there does not exist an element a € %  with a ( x ) = x ( x )  for all 
x E %. But x(x) = 2x is surely a “harmless” function. Why not throw in 
all linear functions x ~ a  + /3x and not just the translations x ~ a  -t x? The 
difficulty now is that the linear functions require two parameters a and /I. 
There is no “nice” function of the type [.;I : % X %+% where we 
could then define application so that [ a , / 3 ] ( x ) = a + / I x .  The point is that 
we would want x ( y )  to be a linear polynomial in each variable separately. 
But then x(x) is no longer linear but rather is quadratic. (In any case, the 
project is doomed as soon as x ~ l +  x is allowed; this function has no 
fixed point, but in a full theory of combinators all functions have fixed 
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points.) The rub comes when we try to combine the definability of x ( y )  
along with what Curry calls combinatoty completeness. This point is per- 
haps not made clear by Church, and his few words of justification do noi 
seem to me to be sufficient. 

Is there, then, a model that combines the definability of application (and 
self-application) along with a flexible theory of functions? But hold, we are 
not allowed to ask this question because we have put ourselves back to 
1928 (or earlier) in a state ignorant of the work of Curry and Church. It is 
required that we discover the A-calculus-the combinators and their 
laws-on our own. 

So let us consider again the thoughts we had on functions in the last 
section. We left off after having written a first chapter of a Master’s thesis 
about continuous set functions and their representation by multi-relations 
P & A * .  We defined there in formula (6)  an application P ( X )  for all X L A .  
This seems fairly powerful. The idea of set- and function-abstraction was 
certainly in the air at that time (Curry and Church did not start in a 
vacuum), thus the idea of a notation (say, like that of Russell, or Peano, or 
Frege) for abstraction could have occurred to our Master’s candidate. I will 
not try to construct an “original” notation, but will use Church‘s: 

Here, .[XI is an expression with possibly a free set variable X and 
T [ {  x I , .  . . ,x,}] is short for the substitution of the set-term { x I , .  . . ,x,} for 
the variable X in 7. Bound variables and substitution were well understood 
in 1928 even if Curry is right that the substitution process is messy. 
Formula (1) is a set-theoretical construction (of subsets of A *), so there is 
no unhistorical “anticipation” of Church. 

It is without difficulty that we imagine the recognition of the following 
two laws: 

( a )  Ax. .[XI =AY. T [  Y ] ,  

provided of course that Y is not free in 4x1 and that substitution resolves 
clashes between free and bound variables. Similarly, there is a principle of 
extensionality : 

( 5 )  If, for all X cA, we have T [  X I  = u[ X I ,  

then AX. T [  XI =AX. u[ X I .  

Perhaps it is also useful to mention a stronger version of this law which 
takes special advantage of the fact that abstracts are sets: 

(5’) If, for all X C A ,  we have T [  X I  c u[ X I ,  

then AX. T [  X ]  LAX. u[ X I .  
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These laws are justified by the usual behaviour of bound variables and 
very, very elementary extensionality properties of set formation in (1). 

The next law would, admittedly, require a little more imagination. The 
point is that we have already seen that there is a one-one correspondence 
between certain multi-relations and continuous set mappings. What would 
require a grasp of formal manipulation would be the insight of how to 
express this in the above notation. But, since class abstraction was already 
known, we can hope our hypothetical Master’s candidate would write: 

( P )  (AX. . [ X I ) <  Y )  = .[ Y ] ,  

provided the mapping XHT[X] is a continuous set mapping on subsets of 
A .  This law expresses exactly the fact, already noted, that if we use (1) 
above to define. a multi-relation from a continuous map, then under the 
definition of application we achieve the same mapping by applying the 
multi-relation to any suitable argument Y C A .  

The aspect to emphasize at once is that all this discussion is almost 
purely notational: (a), ( p), (5) are just notational variants of facts already 
known. There is no hint of tricks of self-application yet, and we need to 
ask: “How could a coherent notion of self-application be based on such 
set-theoretical definitions?’ 

Look again at the definition given in (I)  above. There is a plain 
distinction of type involved, because while X C A is intended for argu- 
ments, the results of what is defined are multi-relations 

AX. 7 [ X ]  C A * .  

Would anyone (let alone our Master’s candidate) ever be tempted to 
confuse these types (that is, to confuse subsets of A and subsets of A*)? 

Obviously, I want the answer to be “yes”, but can I motivate it? Let us 
stop to reason that a confusion of the kind requested would require that 
subsets of A* be at the same time subsets of A .  If the set A were closed 
under the formation of finite sequences, then we would have A * C A and, 
trivially, X C A * would imply X c A .  

Are there such sets A* C A? Perhaps Russell and Wiener might have 
balked at first, because Wiener’s definition of pairs would-strictly applied 
-have resulted in sets of infinite type. But Kuratowski, Hausdorff, 
Zermelo or Von Neumann would have had no trouble with the suggestion. 
For Russell, it would have been simple enough to axiomatize the finite- 
sequence-forming operation and to point out how many models there are 
where we can regard A * C A .  It would even be easy to go further and 
eliminate all type distinctions previously found by getting A* = A .  (In 
Zermelo’s theory, consider the least set closed under the formation of finite 
sequences-“generated” from 0, so to speak.) 
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Having had the idea of closing up A under sequences, we remark that 
the self-application P(P) makes perfectly good sense, because now P L A  * 
C A  and P(P) is defined. Even better, from eq. (6) of the last section, we 
see that X (  Y) alwqs  makes sense for all X, Y L A .  Note that 

X(  Y )  = ( X  n A*)(  Y ) ,  

but, since A * c A ,  we lose no continuous functions this way. Also it is 
obvious from the definition that X (  Y) is continuous in both X and Y (the 
operation is even distributive in X). This is the main insight: the uniformly 
“type-free’’ definition of X ( Y )  is permitted for a very elementary set- 
theoretical reason. But will we be motivated to go further? 

Once a person has an operation he naturally tries to iterate it. A 
particularly simple case of iteration is something like P(X)(  Y)(Z).  Take P 
fixed. The set P is a multi-relation applied to X. But the result (possibly 
better regarded as restricted to A*) is a multi-relation we can apply to Y; 
and so on. Once we say to ourselves: “Sets determine multi-relations; the 
values are sets; these values determine multi-relations in turn”, there is no 
reason to stop. 

Now P ( X ) ( Y ) ( Z )  is a three-place function, continuous in all its argu- 
ments (recall what we already remarked about composition). We should 
ask: “What three-place continuous functions do we get in this way?” 
Surely this is a natural question. The answer is “all”. 

Theorem. Assume A * C A .  Let X,, X , ,  . . . X,, - H 7[ X,, X , ,  . . . , X,, - ,] define a 
continuous set mapping of n-variables. Let 

P = up,. . . Ax,- *’ T[ x,, . . -, x,-, 1. 

P ( X , ) ( X , ) - - .  ( X n - , ) = 7 [ X , , X 1  ,..., X , , - , ]  

Then P is a multi-relation such that 

for all X,, XI, . . . , X,, - c A .  

This result is the n-ary generalization of the principle ( p )  already 
mentioned. Recall that-given Chapter 1-( p)  followed by definition. The 
above theorem would follow at once from iteration of principle ( p )  
provided we establish (the true) 

Lemma. If X,,X, ,... 7X,t+r[Xo,X1 ,..., X,] is a continuous set mapping of 
(n + 1) variables, then 

x , , x , , . . . , x , - , H ~ , , .  7[ XO’X,, .. . , X , , ]  

is a continuous set mapping of n-variables. 
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The proof of the lemma is an elementary consequence of formula ( 1 )  of 
this section (where 7 [ X ]  is replaced by 7[X0,X1,.. . , X J  and X is replaced 
by X,) .  One only has to take a free set variable, replace it by a directed 
union, and then bring the union to the outside of the set abstraction by 
valid set-theoretical principles. 

The point of the theorem is that iterated application is the “inverse” of 
iterated abstraction-provided we have a lemma to the effect that abstrac- 
tion preserves continuity. 

Now the Master’s thesis is taking on more substance; however, at this 
point self-application has still played no major role. Rather, we have 
motivated and implemented in the present theory Schonfinkel’s idea that 
n-ary functions can be reduced to monadic functions (at least in this 
context of continuous set functions). The question that remains is: “Where 
would the combinators have come from?” 

It is not fair to answer that Schonfinkel’s paper was published before 
1928 and that our Master’s candidate may have read it. Let us try to get 
him to discover the combinators himself. Recall that under the assumption 
A * c A we can regard application as a binary set operation: 

(2) X(Y)={y13n3yl, ..., y , ~  Y.  ( y , y , , . . . , y , ) ~ X ) .  

(This is just (6)  of the last section.) Even in the notation of Principia it 
would have been readily seen that this is continuous in both variables- 
even if we did not cheat and use the three dots. Compositions of continu- 
ous functions are continuous; A-abstractions of continuous functions are 
continuous; these constructs can be iterated as much as we please; hence, 
consider the iterated combination 

B=AFAGAX. F(G(X)) .  

By the Theorem, B ( F ) ( G )  represents the composition of F and G; that is, 
B(F)( G )  is a multi-relation representing the function represented by the 
composition of the functions represented by the multi-relations F and G .  
(This talk of representation is clearly becoming too complex.) Therefore, B 
itself represents the “general idea” of composition. This is probably the 
first non-trivial combinator to be discovered. As is common, we shall use 
in the sequel the more readable infix notation: 

Fo G = B( F ) (  G).  

Admittedly, this discussion all seems totally trivial afier the work of 
Curry and Church, but there are two remarks I might make. In the first 
place, even today the combinators are not all that well-known (though 
studies in Computer Science have given them a new lease on life). Thus 
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there is a contemporary problem of motivating them when, say, trying to 
explain the idea to other mathematical but non logically-trained col- 
leagues. The interpretation proposed here is, I feel, a rather direct way of 
showing that a non-trivial combinatory algebra is possible (and it is 
definitely easier than the non-extensional algebra of Godel numbers under 
{ e } ( n )  as application). Having realized this, the second remark may have 
greater weight: I believe that in 1928 someone could have reasoned: “If I 
can iterate certain continuity-preserving operations, then I should iterate 
them and try to find out what they give.” Many mathematical discoveries 
have been made on less clear grounds. It strikes me as a suitably “empiri- 
cal” approach. 

So ends Chapter 2 of the hypothetical Master’s thesis: the assumption 
A * C A  has been utilized more for iteration of concepts than for self- 
application. What has been shown is that a full theory of continuous 
functions (as exactly represented by multi-relations) is achieved in such a 
way that a notation of application and abstraction is completely meaning- 
ful in any degree of intermixing (iteration). Moreover, certain obvious laws 
(such as (a), (p ) ,  ([), ([*)) hold in what has now become a “type-free” 
manner. These laws are enough to justify many laws of combinators (e.g. 
the associativity of B). The construction has provided a model for a 
coherent (though not as yet very formal) theory of application and ab- 
straction-a theory which, as we shall see, is open to many extensions. 

It should be stressed that the theory of continuous functions for which 
these laws are valid is one where the notion of function (as a set mapping) 
is replaced by the notion of a representing multi-relation. The map 
X H T [ X ]  (if continuous) is represented perfectly by the corresponding 
multi-relation AX. .[XI of formula (1): we could call this multi-relation the 
graph of the map. But the reader must heed the fact that only continuous 
set mappings have graphs of this kind. 

Looking back at the early writings on A-calculus such a point of view 
may seem very limited, and what has to be done is to illustrate the scope of 
such a theory of continuous functions. In any case in what follows we are 
simply going to identify continuous functions with their graphs and use 
this idea as our principal notion of function. Note, however, one advantage 
of our approach over the formal, purely axiomatic induction of A-calculus 
by Curry and Church: in this context the combinators are seen as special 
continuous functions-there are many more such functions than merely 
those defined in some restricted notation. In this way the combinators (id 
combination with other operators) are given a greater range of applicabil- 
ity over just the “logical” uses intended by their discoverers. 

(Returning from 1928 for a moment to 1972, it should be remarked that 
Plotkin defined the model by forming not A* but the closure of A under 
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ordered pairs of finite subsets of the set being constructed. The two 
closures are of the same order of complexity, but the author feels that the 
use of A *  makes the definitions look more elementary.) 

4. Some notes on iteration and computability 

In the previous section self-application (better: confusion of types) was 
made palatable (or at least: coherent) through the multi-relational repre- 
sentation of continuous set mappings and the closure condition A * c A. It 
should be pointed out again, however, that very little advantage was taken 
of the possibility of self-application, as the “natural” combinators do not 
emphasize self-application. Since Church was fundamentally concerned 
with the paradoxes, he considered the question from the start, but his 
monograph CHURCH (1941) does not on the surface exploit the freedom of 
self-application very much. 

Whether our Master’s candidate would have grasped the significance of 
diagonal applications is not so compelling an hypothesis. But, nevertheless 
X ( X )  is at once seen to be a continuous set function;.perhaps the step to 
looking at 

OLY. X ( X ) ) ( U .  X ( X ) )  

would have required a certain curiosity. Certainly, the paradoxes were 
widely discussed. So even the kind of formula that enters in their deriva- 
tions is not all that weird: 

F ( X ( X ) ) ) ( U .  F ( X ( X ) ) ) .  

(Here, as we have already remarked, not should replace F for the sake of 
paradox.) If we regard the above as a continuous map F hY(F‘)(that is, Y 
is XF of the above expression), then-as in the derivation of the Russell 
Paradox-we have by a use of ( p )  

Y ( F ) = F ( Y ( F ) ) .  

[Surely this is the way Curry discovered the so-called Paradoxical Combi- 
nator; note his derivation of the Russell Paradox in CURRY (1930, p. 5 1 l).) 

Perhaps by now our Master’s student is working on his Doctor’s thesis. 
If he were the kind of person to submit papers to Fundarnenta, he would 
have surely read KNASTER (1928) written in 1927. This note contains the 
general Fixed-Point Lemma for Monotone Set Mappings, a joint result of 
Knaster and Tarski. By a monotone map, we understand a function such 
that 

(1) X c Y always implies F ( X )  c F( Y ) .  
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Here X ,  Y L A  and the values of the function have the same type: F ( X )  c 
A.  The following theorem specializes from complete lattices the statement 
of TARSKI (1955), a paper written in 1953 and reporting on results of 1939 
and earlier. 

Theorem. Every monotone set mapping F : P A + P A  has a least fixedpoint, 
and indeed the set of allfixed points, { X c A I X =  F ( X ) } ,  forms a complete 
lattice under c.  

Of course, continuous set mappings are monotone (Hint: consider the 
directed family of sets {X, Y}, where X C Y), and so the theorem applies 
to that case. We need not detail the whole and quite elementary proof of 
the theorem here, but a few words about it might be helpful. Let us take 
the problem of proving the existence of the least fixed point. Consider the 
family of sets “closed” under F,  namely { X  C A I F ( X )  L X } .  Even though 
F is not a closure operation and is not assumed to be any better than 
monotone, we can still easily prove that this family of “closed” sets is 
closed under arbitrary intersections; in particular, the intersection of the 
whale family belongs to the family itself (that this intersection exists comes 
from the fact that the set A is itself “closed”). Call this intersection X,. We 
have F(Xo) C X , ,  and then by monotonicity F(F(X,))C F(Xo). This proves 
that F(X,) is “closed” also; whence, X o c F ( X , )  because X ,  is already 
known to be the least one in that family. Obviously, then, X ,  is not only a 
fixed point but also the least one in the family of fixed points (since every 
fixed point is “closed”). 

In the continuous case, the least fixed point of F can be “found” by a 
simple infinite iteration; calling the least fixed-point operator fix we can 
write: 

f l x ( F ) =  6 F “ ( 0 ) .  
n = O  

(2) 

On the right, 0 is the empty set. The proof by continuity that the operator 
does indeed give the least fixed point is uery elementary, for one has only 
to note that on the right the union is directed. (In the non-continuous case, 
the iteration has to be continued into the transfinite.) 

In KLEENE (1952), the nub of the proof is embedded in his proof of the 
First Recursion Theorem (pp. 348 ff), where the verification that partial 
recursive functionals are continuous is carried back to first principles. But 
note that Kleene is proving two things: the least fixed point exists and it is 
computable. (Strictly speaking, he is dealing with partial functions not 
subsets; a discussion of the obvious connection is given in SCOTT (1976), 
which also relates closely to the considerations of the present paper.) These 
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facts ought to be separated, since the existence part is more general and 
more elementary; in fact, we can prove existence long before we have 
introduced tools to make computability (a kind of definability) precise. 
Keep in mind, however, that this remark does not eliminate any of the 
problems of showing that particular functions are continuous; all we have 
at hand so far from the last section is a method for generating a large 
number of continuous-and quite complex-functions from other con- 
tinuous functions. 

Now look back at the definition of flx in (2) above. For each integer n, 
the map F H F “ ( 0 )  is continuous by the composition principle. (Now we 
are, as usual, identifying functions with their graphs as mutli-relations.) 
Any point-wise union of continuous functions is continuous. Hence, the 
union map F ~ f l x ( I ; )  is continuous: flx must have a graph. What is it? 

By now we should probably give up the rhetorical device of arguing that 
all this could have been done in 1928. I believe I have at least argued that 
the discovery of the combinators and their elementary laws could have 
been given a set-theoretical (and, for my taste, natural) groundmg in 1928. 
On the other hand, whether their applications and uses would have been so 
quickly recognized is not clear, since the theory of recursive functions took 
some time and somewhat different motivation in order to get started. 
(Mainly, Godel and the incompleteness theorems were required.) Note, 
however, that the reason that Knaster and Tarski introduced the fixed- 
point method was to produce the recursions needed in set-theoretical 
arguments like the Schroder-Bernstein Theorem and many generaliza- 
tions. Perhaps, then, the step to a general theory of recursion could have 
come forward along these lines-but such conjectures are more or less 
pointless. 

So we return to the question of relating flx to the “pure” combinators. 
Since flx(F) is always the least fixed point of the mapping X-F(X),and 
since Y(F) is some fixed point, then flx(F)CY(F) for all F.  It was a most 
useful discovery of DAVID PARK (1969) that f lx=Y was actually possible. 
(The proof of Park was given for a slightly different kind of interpretation 
of X-calculus, but I had no trouble in recasting the idea for a similar proof 
in SCOTT (1 976, p. 569 f).) In order to give the proof here, some analysis of 
A* within A is required. 

Let < be a binary relation on A .  We say i is a well-founded relation, if 
whenever X C A is non-empty, then x E X  exists with no y i x als I satisfy- 
ing y E A’. (The element x is “minimal” in X with respect to <.) We say 
that A* is progressive in A (with respect to <) if whenever we have 
xo,x, ,  . . . , x,, E A ,  then x i< (xo ,x , ,  . . . , x,,) for 1 < i < n .  (Tuples are always 
worse than their (later) terms.) The essential point of the well-founded, 
progressive case is that every element of A * can be well-pictured as a tree: 
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each node, if an element of A * ,  has as its immediate descendants the terms 
of the sequence of positive index. If you come to a sequence of length less 
than two or come to an element of A\A*, then you stop. What the 
assumption amounts to is that this tree is always finite. 

Theorem. If < is a well- founded relation on A and if A* C A is progressive 
in A ,  then the paradoxical combinator Y is the least fixed-point operator. 

Proof. Let F be a multi-relation representing a continuous set function. 
Let B =  F ( B )  be any fixed point of F. For the moment write A=?&. X ( X ) .  
Let U=M. F ( X ( X ) ) ,  and recall that Y ( F ) = A ( U ) .  We know A ( U )  is a 
fixed point of F, but we must show that A( U )  C B.  

Let us write (xo,xl,. . . ,x,,)<< U provided {x,,. . .,x,,} c U. By continuity 
A( U )  = U {A(  { XI,. . . %  x, })I(xo,xI~ . -. 9 xn- I ) << u } a  

Thus, we need only show that 
( x o , x l , .  . . , x,,) << U always implies A( { x,, . . . , x,, }) C B .  

So suppose not. Let S be the set of tuples << U for which the inclusionfuils. 
Since < is well-founded, let (xo,xl,. . . , x n )  be a minimal element of S .  We 
seek a contradiction. 

To this end, let yo be any element of A({xo,xl, ..., x,,})\B. Because 

Y o €  { X I , .  ..J,,}({ x,,...,x,,)), 

we see from formula (2) of the last section that there are elements y , ,  . . . ,ym 
where 

{ Y, ,  . - . ,Y , }  C {xi,. ..%x,,}, and 

(Y,,Y,, . . . ,Ym) <(xo>xlt.. .A>. 

(Y0,Y 1, * * .  ,Ym) E u- AX. F ( X ( X ) ) ,  

'(A( { Y 1 , .  . * ,Urn} 1) c F(B ) = 

( Y ~ , Y  I , - * - ~ Y ~ )  E{ xi , - -  .'x,,}. 

But then, by assumption, 

Since (yo,yI , .  . . , y m )  << U ,  we know then that A({ y , ,  . . . , y m } )  C B.  But 

so by definition yo  E F(A({ y , ,  . . . ,ym})) .  By monotonicity 

so yo E B,  which is impossible! 

Actually we need not invoke an arbitrary i on A for the above result, 
because there is always a least relation for which A* is progressive in A .  
We can call the whole structure A* C A  a well-founded model for tuples 
provided this least relation is well-founded. 
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But what does this have to do with computability and Kleene's First 
Recursion Theorem? We need some definitions. A structure A* C A will be 
said to be computable with respect to an enumeration A = { a,ln E N} (where 
N = { 0,1,2,. , . }) provided that we can show uniformly that the relationship 

(an,,, an,, * * * 9 an, -, ) = ank 

is recursively enumerable in no, n,, . . . ,n,. 
In the same vein we say a subset U 5 A is computable if { n E Nla, E U )  

is recursively enumerable. A continuous set function Xo, X I ,  . . . , 
X m - ,  H .[Xo,XI,  . . . , X m - , ]  is computable provided its graph 
U s ,  * - Urn- I .  7[X0, X I , .  . . ,Xm- ,] is computable. 

Theorem. (i) In a computable structure, the computable functions contain all 
the computable constants and are closed under composition and A-abstraction; 

(ii) Application is a computable function (of two arguments), and the 
computable functions are closed under point- wise application; 

(iii) If G(Xo,X,, . . . ,X,) is computable function, then so is the least solution 
to the equation 

F(X,, . . . ,Xn) = G( F,X,, . . . , Xn);  

in fact, tlx is a computable function; 

explicit definition as the Y-combinator. 
(iv) Provided A* c A is well- founded, flx can be proved computable by 

Proof. Though the theorem has been stated for functions (of several 
variables)-which we could think of as defined by terms (with the ap- 
propriate number of free variables) built up from constant symbols for 
computable subsets of A by application and A-abstraction-here is a case 
where the argument is easier by combinators. We reduce all A-definitions 
to the well-known combinators S and K, which we have to prove are 
computable subsets of A.  Then we need only check that if U and V are 
computable sets, then so is U(V) .  This will take care of parts (i) and (ii). 
Recursion in part (ii) still requires that we show fix to be computable; 
however, in part (iv) in the well-founded case, there is nothing to prove, 
because Y is A-definable by our previous theorem. 

Turning now to the details we recall 
K - M A Y .  X .  

By the definition of A-abstraction this comes out: 
K =  { ( ) } u { (xo, xi7 . . . , X ,  ) 1x0 E AY. { xi,.  . * 9 xn}  } 

= { ( ) } u { << ), x 1, . . ., x, ) Ix I , .  . ., x, E A } 

u { ( ( Y ~ , Y  1 > * .  . ,Ym ) 9x1, * . *,  xn ) 1 Y O  E { * * - > x n }  } * 
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This means that a E K  is equivalent to 

a = ( ) V 3 n 3 x 1 , .  . . , x,, E A. a = (( ), x , ,  . . . , x,, ) V 
3 n ,  m 3 x 1 ,  . . . , x,, E A 3yo, . . . ,y, E A 3 z  E A. a = ( z ,  x l , .  . . , x,, ) A z 

= ( Y O , Y , ,  ,urn> A   YO=^, V * * * v . Y ~ = x ~ ]  ] * 
This is wholly existential on r.e. predicates (r.e. with respect to the 
enumeration), so K is computable. 

In order to be able to state the formula for S it is convenient to make 
some definitions: 

4 0 1 =  {Oh 
A[n+l]= { (uo>ul,* * * , u m ) l u o ~ A [ n ] ~ ~ l , .  - - ,urn E A  } -  

We recall that 
S=AFAGAX. F ( X ) ( G ( X ) ) .  

(S is of course the combinator for point-wise application of two functions.) 
Now we can write: 

S=A[o]UA[l]UA[2]U 

{ (<<x03 * * * 1 xk )7gl7 . * . ? g m ) x f I ?  . * ' L f n )  1 
xo E { j - 1 ,  * * * , f n  } ( { x 1 9  . . ., x k } ) (  { g1, * * * 9 g m  } ( { X I  * .  . 9xk } 1)) * 

To show that a E S is characterizable by an existential predicate, the main 
difficulty is in showing 

xo E { f i , .  . . ,fn } ( { X I , .  . . yxk >I({ gl, * .  - 9 g m  1 ( { X I ,  * * * , x k } ) )  

is existential. The first step is to make this equivalent with 

3p3t~9 * 9 fp  E { g1, . . . ,g,} ({  x i ,  . . . , xk }). 

(XO, t , ,  ..., f ~ ) E { f l  , . , . , f , , } ( { X I , . . . , X k } ) .  

It then takes two more applications of the definition of application to get 
down to the elements of the finite sets. What is new in this calculation over 
the one for K is that the clause of the form to,. . . , tp E U is really a finite 
conjunction of variable length. A more formal (and less dotty) notation for 
finite sequences would give us existential quantifiers mixed with bounded 
universal quantifiers (finite conjunctions) which would be enough to show 
that the predicate is r.e. 

We use the same kind of argument to show the closure of the comput- 
able sets under application. The case of flx is similar, since aEflx means 

= ( f O J 1 7  . . - J m  > A ~ O E  { f l ,  * .  . 9 fm 1 "(@I g n ,  m3fo,fi,. . . ,jm E A - 
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The iterated application has to be shown to be uniformly r.e. in the 
parameters (including n )  with respect to the underlying enumeration of A .  
It should be clear how to do this. The reason why it is sufficient for (iv) 
merely to consider f i x  is that we can write: 

F = f i x ( M A X , . . - h X , , .  G ( N , X ,  ,..., X,,));  

and, since G is computable, everything on the right is also. 

An interesting corollary to this theorem is the observation that the 
computable subsets of any computable structure form a model of the 
A-calculus. This is one rather strong reason why this approach to model 
building can be considered “constructive.” 

What is the difference between the Fixed-Point Theorem and the First 
Recursion Tkorem? The former only involves the proof that fixed points 
exist and that the least fixed-point operator is continuous. (The second part 
of this statement is essential for iterated recursive definitions: things 
introduced by fixed points can be employed for further introductions by 
fixed points-the reader will get the (fixed) point here if he recalls that 
parameters have to be allowed.) The latter statement further requires a 
proof that (assuming we start with computable things) the results are 
computable. The Second Recursion Theorem (due to Kleene) would dem- 
onstrate that not only can we effectively Godel number all these defini- 
tions, but in a recursion for a function F the right-hand side can employ 
the Godel number of the very function being defined (that is, there is a 
function whose recursive definition calls for its own Godel number). We 
do not discuss the details here for the present model, but a quite neat 
version was given in SCOIT (1976, Section 3). 

We should stop to consider whether suitable structures exist. The 
minimal one where A equals the closure of 0 under finite sequences is 
computable and well-founded. It does not make any difference here what 
kind of sequence we consider (what our model is), because all theories of 
sequences must satisfy 

( x o , .  . . , x,, - , ) = (yo, . . . ,y, - I > e n  = m Atfi <n. xi = yi, 

and, when we start with “nothing,” all theories lead to the same minimal 
model A = A *  (up to isomorphism). The same would go for a model 
generated by atoms (i.e., elements which are non-sequences). This kind of 
structure is the minimal solution of 

where we require that B n A * =O. All such models are well-founded 
structures determined up to isomorphism by the cardinality of B .  Provided 
that B is countable, there are many enumerations of A making the 

A = B u A * ,  
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structure computable. Provided also that we strengthen the definition of 
well-foundedness to include xo<(xo,x,, . . . ,x,,),  then aff strongly well- 
founded structures are of this form. 

In an enumeration making A *  c A computable it is not necessarily the 
case that B=A\A* is computable (r.e. with respect to the enumeration). 
Similarly, the inequality predicate x #y need not be computable; perhaps 
these stronger conditions ought to be imposed in the definition. In a 
different direction perhaps we should only consider computable those 
predicates r.e. with respect to aff enumerations of A making A* C A  (or 
whatever) computable. 

So much for remarks on “standard” models. A “non-standard” model 
(but one with only finite sequences) is formed by making up a “peculiar” 
one-one correspondence between A and A *. Call it T : A*++A. The theory 
of tuples then uses r ( ( x 0  ,..., x , - , ) ) E A  in place of (xo ,..., x,,...~) (This is 
what is done for A = N  when we use a Godel numbering of finite 
sequences.) We could also do a similar theory with atoms, but the extra 
generality is not needed here. A different way of introducing atoms into A 
is suggested in the next section. 

It is a quite remarkable discovery of BAETEN and BOERBOOM (1978) that 
such non-standard models completely change the behavior of the resulting 
A-calculus. (Earlier, J. Owlett when a graduate student at Oxford had 
found that the connection between fix and Y could be ruined by a 
non-standard tupling.) The result of Baeten and Boerboom (proved for the 
graph model of SCOTT (1976) but clearly transferable to the present 
context) can be stated as follows ( A  is assumed denumerable): 

Theorem. (i) Let X A be arbitrary. There is a choice of T : A*-A so that 
under this notion of tuple A(A) = X (instead of 0 as in the weff- founded case). 

(ii) Given any closed A-term r ,  there is a choice of T :  A*-A so that 
A(A)= r .  

The proof of (ii) is by a fairly straight-forward forcing construction, 
where the forcing conditions are certain finite partial functions P c T (for 
7 : A  *++A). It would be worthwhile to check whether the proof works with 
terms involving fix as a primitive combinator and not defined as Y. The 
resulting tupling is non-recursive, by the way. 

Having provided a somewhat detailed analysis of iteration in these 
models and a glimpse of how recursive definitions enter via combinators, 
we ought to conclude this section with some remarks on how properties of 
the recursively defined functions should be proved. 
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In Section 6 of CURRY (1979) we find a useful, but brief review of 
combinatory arithmetic and Kleene’s early work on the A-definability of 
recursive functions (see the Curry paper for the explicit references). Per- 
haps we should remark that the word “definability” is not quite properly 
used in this regard in view of later work on the connection between 
recursion theory and formalized calculi: it would be better to say that 
Kleene established the numeralwise representabiliw of partial recursive 
functions in the (pure) A-calculus. The reason for making this verbal 
distinction is that the ‘‘numerals’’ are each taken separately (Curry calls 
them the combinators Z,,), and there is no predicate in the theory for the 
class of integers. Therefore, even though we can see the results of any one 
calculation, there is no way to formulate-in the theory-a proof by 
mathematical induction in order to establish general facts about the 
integers. (The variable n is outside the system, for example.) This strikes 
me as something of a drawback, but of course Curry was striving for the 
weaker, more basic, more ultimate foundational systems he wanted to see 
common to all fcrmalized theories. Not all theories, obviously, should be as 
strong as first-order arithmetic. Be that as it may, there is still a question of 
just how (or where) we are to do our inductions. 

Instead of introducing by one scheme or the other the integers into our 
present system, we will fix attention for the sake of illustration on the 
combinator f i x  as the embodiment of the iteration concept. For us this is 
reasonable because we always have continuous set functions at the back of 
the mind, and the least-fixed-point construction is quite fundamental in 
this context. We have already seen how to use f i x  in definitions; what 
remains is to see how it comes into inductions. 

In a highly schematic way, we could consider directed-complete predi- 
cates of subsets of A.  Such a predicate S ( X )  has the property of being 
closed under directed unions of sets. Now the least fixed point is a directed 
union; thus, it is certainly valid in our model that the following holds for 
all directed-complete predicates: 

(IT) 9 (0) / / V X [  9 ( X ) - + 9 (  F ( X ) )  ] -+9 (fix( F ) ) .  

The only trouble with (A) ) ,  the principle of directed-complete induction, is 
that it would require some machinery for the introduction of the predi- 
cates. If we want a more elementary principle of the nature of (t) or of (q), 
then we need to take a form of the predicate expressible in our previous 
notation. Here is one example: 

( 1 * )  P(@ C Q ( @ A v X [  P ( X >  C Q(X)+P( f ’ (X) )  C Q ( F ( X ) ) ]  

+P(f lx(F))  Q(f ix(F)) .  
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It is simple to verify that P(X)  c Q(X) is a directed-complete predicate. 
Quite a lot can be done with this form of induction, though not everything. 
An interesting example of something statable by combinators but requiring 
induction to prove was given in SCOTT (1976, p. 534): 

flx(XFhx. G ( X ) ( F ( X ) ) )  =Ax. f i x ( G ( X ) ) .  

This equation can easily be rewritten in combinators: B(flx(S)) = B(f1x). 
Other examples and references can be found in BARENDREGT (1977, pp. 
1121 and 1126). 

As special cases of ( t* ) ,  we remark that the implication 
F(A)CA+fIX(F) L A  

follows at once by the substitutions P = M .  X and Q=AX. A .  In the 
appendix to this paper we collect together some axioms suggested by our 
model construction (cf. also SCOTT (1973)). The reader should note two 
things: in the first place, this is a first-order theory not just an equational 
theory. (One reason for this is the fact that it seems impossible to regard 
the unrestricted quantifiers as combinators-they are not continuous as 
operators.) Secondly, what we propose is a very weak theory, because it 
could be interpreted within the theory of r.e. sets and very likely proved 
consistent in ordinary first-order arithmetic. In any case it is formulated in 
as close a form to the original view of combinatory logic as we can come 
under the plan of modelling functions by continuous set mappings. 

5. Some aspects of type theory 

In this section of the paper we shall restrict attention to the models 
where A * = A .  As we pointed out before, not only do such sets exist, but 
this equation eliminates completely the distinction in type between subsets 
X G A  * and X c A. Every set in our “universe” is at the same time a set of 
sequences, and conversely. We saw this was helpful as regards the discus- 
sion of continuous set functions; however, this initial elimination of one 
type distinction hardly eliminates all type distinctions-there is another 
important one close at hand. 

Is there a difference between functions and arguments? Certainly in use, 
but the model presented above has shown that functions may be incorpo- 
rated as objects among the arguments. That was how we justified self- 
application. But, with reference to condition (9) of Section 2, it will be seen 
that (even when A * = A) only certain subsets of A * are used to represent 
functions; in a precise sense in this model there are “fewer” functions than 
arguments. Thus, despite our being able to give a useful meaning to X( Y) 
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for all X ,  Y C A ,  the distinction between function and argument remains on 
the level of the object of the model. 

We can easily give symbolic form to the distinction by employing in a 
well-known way the A-notation. What does AX. P ( X )  represent (in the 
model) for arbitrary P L A ?  Answer: the arbitrary continuous function. 
Condition (9) referred to above is equivalent to the satisfaction of this 
equation : 
(9) P=AX. P ( X )  

Often suggested as a universally valid law of A-calculus, it is often wrongly 
called the axiom of extensionality -law (0 is correctly the extensionality 
principle for the A-calculus. CURRY (1979) speaks of “strict” extensionality, 
which is fair enough. The strictness consists of the requirement that every 
object uniquely represents a function. As is well-known, we could replace 
(the universal generalization of) (9) by the biconditional: 

( C P )  

By a very exact analogy with the axiom of set theory, whereby two sets 
with the same elements are equal, we can read (cp) as saying that two 
functions with the same values are equal. The rub is that in general we do 
not known whether P and Q are always the chosen representatives of 
functions. In the case of (t), the two A-abstracts are by primary intent the 
representatives of the functions in question, and so we say they are equal 
in an extensional theory. (cp) above says too much, for, just as in set theory, 
we can imagine a universe where some objects are not functions (some 
objects are not sets-atoms, for instance). I prefer to call (cp) a principle of 
functionality, meaning that every object is (uniquely) to be regarded as a 
function. This should not restrict the use of the word “functionality” for 
other uses-for example functionality relative to certain mapping proper- 
ties of the kind we shall discuss below. 

Indeed, law (9) always fails in the kind of model constructed above, 
because, for P = 0 ,  it is clear from formula (1) of Section 3 that 
AX. 0 ( X ) # 0  for a trivial reason. (It would do no good to leave out the 
element ()€AX. T [ X ] .  Consider R = { ( x , x ) l x E A } ,  then R ( X ) = X  for 
all X but RZAX. X according to the actual definition.) What is true in all 
these models-and this is the reason I have camed around a seemingly 
superfluous empty sequence-is a somewhat weaker law: 

P= Q-VX.  P ( X )  = Q ( X ) .  

(9-) P C A X .  P ( X ) .  

Owing to our assumption that A * = A ,  arbitrary subsets of A do satisfy 
(9 -). For if a E P, then either a = ( ), in which case the element belongs to 
M. P ( X )  by definition of abstraction, or else we have a=(yo,y,, ...,y,,), 
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in which case yo E P({ y , ,  . . . ,yn}), by definition of application, and hence 
again the element a E h X .  P ( X ) .  

Interesting as this is, it does not at once answer our question about the 
distinction between argument and function: this model still makes the 
distinction, but we want to know whether there is some (non-trivial) model 
in which the law (7) holds. I gave an answer in 1969 with my first model 
construction by a method that has often been given the unfortunate name 
“Scottery” . (An integrated presentation is planned for BARENDREGT (1980) 
and a very thorough discussion is contained in PLOTKIN and SMYTH (1978), 
where the process is given a categorical formulation incorporating sugges- 
tions of several other people. Another presentation together with the 
connections with the topological and lattice-theoretical aspects of continu- 
ous lattices will appear in GIERZ ET AL. (1980).) A direct construction 
(without inverse limits) was mentioned in SCOTT (1976, p. 549 ff), but 
people have not enjoyed very much reading it there; thus, let me explain 
once more using the models of this paper how easy it is without trying to 
put the approach in a wider context. Essentially the same proof is given in 
PLOTKIN (1972), but the details (by “retracts”) as presented here are very 
much simpler. 

Principle (7-) can be stated purely in terms of combinators and inclu- 
sions between them. We have, in fact, 

AX. X GXFAX. F ( X ) ,  

and this is just the start of a sequence of such containments. Define 
recursively : 

(1) D,=AX. X 

(2) Dn + 1  = WAX. Dn ( F( Dn ( X ) ) )  

We can prove the: 

Lemma. For all integers n ,  
(i) D n C D n + , ;  
(ii) Dno Dn = 0,. 

Proof. For n=O,  both (i) and (ii) are clear from what we have already said. 
Thus assume the case of n and pass to n + 1. 

We can write by (2) above: 

Dn+l(F)=D,,oFoDn, 

Dn+2(F)=Dn+10FODn+1* 

Hence if D,, C On+ ,, then Dn+2 follows by monotonicity and (0. 
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Also we see 

On + 1 Dn + 1 = AF- Dn + SDn + do) 
=AF. D , , o D , , ~ F ~ D , ~ D , , .  

Thus if D,,~D,,=D,, ,  then D n + l o D n + l = D n + l .  

Now define D,=  U {D, , ln=0,1,2 ,... }. We have: 

Theorem. D ,  =W. D,o Fa D ,  = D,.  D,, consequently the >xed points of 
D ,  are closed under application and the following form of A-abstraction: 

h,X. T [  x ]  =m. D,(T[  D , ( X ) ] ) .  

Moreover, as a model, the fixed points of D ,  satisfr (a), (p ) ,  ( E )  and (71). 

Proof. Both of the first two equations follow by continuity in view of (i) of 
the lemma. The first comes from (2) and the second from (ii) of the lemma. 
If X =  D , ( X )  and Y= D,( Y), then 

X(  Y )  = Dm(X)(  Y )  
= ( D ,  0x0 D,)( Y )  

= Dm(X(Dm( '1)) 
= Dm(X( Y ) ) .  

A simple calculation also shows that 

D,(X,X. T [  X I )  =A,X. T [  X I ,  

in view of the equations already proved. 
If T is a term built up by application and A,, then we can leave off the 

first D ,  in the formula defining A, provided we assume all free variables 
have values in the model. It is then easy to check ( p), again provided free 
variables are restricted to the model. The reason that (5) holds is that if we 
assume T [ X ]  = a [ X ]  holds for all X = D,(X) ,  then T [ D , ( X ) ]  = a[D, (X) ]  
holds for all X .  We then employ (6) (unrestricted) and the definition of A,. 
Finally (9) in the model is just a restatement of the first equation of the 
theorem. 

The idea of the theorem is this: the first map Do does nothing; the 
second map D ,  turns everything into a function; the third map D ,  turns 
everything into a functional in the following sense: given F, it is changed 
into a mapping which takes its argument, turns that into a function, 
performs F on the result, and finally converts the answer into a function. 
In general, On+, makes everything into an (n + 1)st-order functional by 
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performing suitable conversions on arguments and values with the help of 
0,. How far can this go on? The answer is: indefinitely! The limit 
functional D ,  works arbitrarily deeply on arguments and values, but 
owing to nice continuity properties of the construction it satisfies the neat 
fixed-point equations of the theorem. Note, however, that this would not 
work out so well if we did not have the n = 0 case of the inclusion (i) of the 
lemma. 

It should also be noted that the method of proof involves a fixed point 
-but apparently not one that can be stated in pure A-calculus. Thus D ,  is 
the least fixed point of the following equation: 

D,=AX. X U W .  D,oFoD,. 

We must take care that the theorem is not trivial. In the minimal model 
for sequence theory, where A * = A and A * is generated from “nothing,” 
the least fixed point of D ,  is analyzed as follows. Indeed by the above the 
least fixed point is just Om(@ and we can see 

D O ( 0 )  = 0 
and 

Dn+1(121)=Un. Dn(121); 

because for all Y it is true that 0 ( Y ) = 0 .  This means that 
D,(@)=AX@ 0 ~ U x x l A X p  @ u * * *  UXXn***AX1AXo. 0 u . e .  . 

Trivial as this seems, a strict application of our definitions reveals that 
Om(@= U {Aln1ln=O, 1,2,. ..}. (See in this regard the calculation of the 
combinators K and S in the last section.) Note that every time a new A 
comes in a new factor of A,,] goes into the union. But in the minimal 
model the union of all the A,,, is just A * ;  so the only fixed point of D ,  is 
the maximal one, A itself. (The situation here is different from the proof 
mentioned in Scorr (1976).) 

To make a repair (and I did not notice this problem until I started to 
write up the paper) we must find a non-minimal model; it will, however, 
turn out to be well-founded though not strongly so. Let A be the closure of 
the one element set {*} under finite sequences. Now here we find that 
A \A * = { *} because the element * should be regarded as a non-sequence. 
(There are many ways in set theory to find such elements.) This model is of 
course well-founded as we have already remarked. We are next going to 
take a quotient by the least equivalence relation = where 

*= (*> = <(*>) = <<<*>)) = (<((*>))) 

= (<<<<*> ) ) ) ) = <<<<<<*> ) ) )) ) = * . . 5 

and where (x,,xl ,..., x n p l ) = ( y 0 , y  ,,..., Y , , - ~ )  if xi=yi for all i<n. The 
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model that results is A / =, which we can think of as the same as A * /  = or 
( A / = ) *  by a slight shift of meaning of the *-operator. 

This model would not be well-founded in the stronger sense where 
xo<(xo, x , ,  . . . ,x , - ,  ), but it is well-founded in the sense used in Section 4 
for the proof of the Y-Theorem. (The .quotient could be regarded as 
resulting from a repetitious replacement of (*) by * in a given sequence 
until no occurrence of (+) remains.) In this model + $ A q ,  and so 
the least fixed point of D, is not the greatest fixed point, which is still 
A =AX. A.  Thus, the fixed-point set of D, has at least two elements, and 
in this way we have found a non-trivial model for (17). In such a model a 
further type distinction has been eliminated because all elements can be 
regarded as (unique representatives) of functions (continuous functions). 
But whether it is really profitable to eliminate such distinctions is another 
question. Note that we could have adjoined as many distinct +-elements as 
we wished. These elements act just like atoms; thus, the (q)-model would 
contain something as complex as the space of all continuous set mappings 
on the (infinite) set of atoms. 

Let us therefore turn to the opposite question of how-given a nice 
A-calculus model-it is possible to introduce type distinctions. There is a 
point in this, because the distinctions allow us to sort out differences 
between elements according to natural properties. The advantage of start- 
ing with a A-calculus model is that the whole of the discussion can be built 
on one notation for function abstraction. (An ordinary type theory has, 
strictly speaking, different application and abstraction notions at all types.) 
The price for one notation for functions is several notations for equivalence 
relations for representing the different types, but this is not so bad since 
the different types are different in any case. 

A considerable amount of detail has already been given in SCOTT (1975) 
and SCOTT (1976, Section 7). Without making the formulation too heavy, 
we can describe here briefly how the method works; a deeper investigation 
would require some familiarity with the theory of continuous lattices and 
their subspaces. Some further very interesting uses of the idea can be 
found in PLOTKIN (1 973). 

Types, for many purposes, can be identified with equivalence relations 
on (subsets of) our model. Indeed, let & G P A  XPA be a transitive and 
symmetric relation. The set of self-related elements, { X  c A l X &  X } ,  may 
be regarded as the subspace of the model in question, and this is the 
subspace of which we are interested in the quotient modulo &.  (We shall 
often write X :  & as short for X &  X . )  Though this is our interest, we shall 
not actually take the quotient, for it is easier to work with the representa- 
tives of the equivalence classes directly. 
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For example, let & and ‘3 be two such equivalence relations. We define 
the equivalence corresponding to the function space, call it [& +%I, by the 
formula: 

(3) 

That [ & + % I  is an equivalence relation is clear. Note that P is always 
equivalent to AX. P ( X ) ,  thus we can regard the equivalence classes as 
consisting of functions. Note, too, that the construction can be iterated-in 
this way we pass to a notion of higher-type function. The reason for 
stressing equivalence relations rather than classes is that our functions are 
meant to be extensional, in the sense that equivalent arguments should get 
equivalent values. In words it is easy to read (3): two functions are 
equivalent if they do equivalent things to equivalent arguments. Keep in 
mind, however, that (3) has further import depending on how demanding 
the given equivalence relations are. The point is that (3) implies that if an 
argument lies in the first subspace, then the value must lie in the second 
subspace- the function is well-defined, therefore. 

This plan for defining types uiu equivalence relations has many features 
of a theory of functionality of the kind advocated by Curry; however, our 
types are not “obs”, that is to say elements of the model. The equivalence 
relations are constructs ouer the model not elements of the model. One 
approach to having obs represent types (better: classes) was taken in Scorn 
(1975), but then a transfinite truth definition is needed in seeing which 
classes the obs define. This may not be a bad thing, but it is less 
elementary than we care to be at the moment. There would be no trouble, 
by the way, in having a theory of equivalence relations (rather than classes) 
done in the form of the 1975 paper. 

Thus there are many approaches to the sorting out of the elements, and 
still many questions about the nature of possible subsets. In particular, the 
question of which A-expressions have types and which types completely 
determine A-expressions seems rather basic. For instance, the common 
combinators are very well behaved as regards type: 

P [ & +‘3] Q iff whenever X & Y ,  then P ( X )  ‘3 Q( Y ) .  

K : & + [ ‘ 3 + & ] ,  

s : [ & +[ ‘ 3 4 g  ] ] + [ [ & +%I+[ & -4 ] 1. 
B :  [‘3+6‘]+[[&+%]+[&+4]].  

Some further details are given in the cited references, but it seems fair to 
say that the study of this idea has hardly begun. Here, for example, is a 
question. The combinator flx is very important, but does it have a special 
character as regards functionality? We are tempted to write: 

Y : [ & + & ] + & .  
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This is not true in general, since we did not put any closure conditions on 
our equivalence relations (say, closure under directed unions). We should 
then ask: “Which are the best closure conditions?” as well as the previous 
question: “How do we prove that a combinator has no functionality?” 

6. Some conclusions and some questions 

We have spoken at great length about functions and their properties in 
this essay. In Section 11 of CURRY (1979), Professor Curry gives the 
well-known reasons why sets can be reduced to functions, and he then 
continues: 

“Thus, it is simpler to define a set in terms of a function than vice versa (for a similar 
.idea cf. the set theory of VON NEUMANN (1928)); but the idea is repugnant to many 
mathematicians, and probably to Scott. This has been a great handicap and source of 
misunderstanding.” 

May I disassociate myself from these sufferers of repugnance? I feel I 
understand rather well the logical interrelationships between sets and 
functions. I would be very happy indeed to reduce sets to functions if there 
were any good theory to do this in. In my opinion there does not exist at the 
present time such a theory-owing to our troubles with the paradoxes. The 
theory of Von Neumann, for example, turned out to be easier to state as a 
set/class theory rather than a function theory. What is needed for a 
workable set theory (regardless of what sets are) is a strong comprehension 
axiom. As far as I can see, the Curry programme has not as yet produced a 
straight-forward theory that is anywhere near as workable as the standard 
Zermelo-Fraenkel system (or the system augmented by classes). However, 
there is a rather fundamental point about the contrast between extensional 
and intensional theories of sets and functions, which is hardly touched on 
in the literature on combinatory logic. For an interesting, and very likely 
workable intensional theory of functions, see FEFERMAN (1980) and the 
related papers cited therein. As regards the question of which comes first: 
the function or the set, it is not a question of repugnance or prejudice on 
my part that causes me to formulate constructions within set theory but a 
problem of helplessness. And I can pinpoint rather narrowly where I think 
the trouble lies. 

For the sake of argument think of a set as a truth-valued function. 
(I know this over simplifies Curry’s approach, but a more subtle view is not 
needed for the point I will make.) Instead of X € A  we will write A(X); to 
assert X E A means to assert A ( X )  = true. On the other hand, to assert 
X $ A  means to assert A(X)=false. The domain of the function A is 
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“everything”-but now the rub starts. The Russell Paradox shows that the 
domain cannot really be everything if we were to allow full comprehen- 
sion. There is no way around Cantor’s Theorem that there are more 
functions than there are arguments and values. (And, from what I can 
understand, the introduction of some concept of “proposition” to replace 
the two, very separate truth values does not seem to help.) 

As is common knowledge to logicians, the way to make A ( X )  always 
meaningful is to restrict by some manner the total possible range of 
functions. The choice of restriction for the Zermelo - Fraenkel set theory 
is to make the number of X for which A ( X )  =true very small compared to 
the total number of things (at least insofar as these comparisons of number 
are expressible in the system). The very feature that makes this view of sets 
easy to grapple with is that we do not need regard sets as functions! The 
“half” of A consisting of the set {XIA(X)=true} is enough to determine 
the whole of A ;  the other, larger “half” {XIA(X)=false} is completely 
determined by the first half. The reason why a half loaf is better than a 
whole is that-in building up sets-we can regard the first, positive half as 
FIXED long before the rest of the elements that would have to enter into 
the negative half ever come into view. (This idea of “earlier” and “later” 
sets is made quite precise in the theory of the rank of a set.) There is a 
certain advantage to regarding the universe of sets as being “open ended” 
(at the top end, at least) even though we have accepted certain laws as 
pertaining to all sets-no matter how “late” these sets come in. The 
consequence of .this view (which, for all I know, may very well be 
repugnant to Curry) is that the domain of A ( X )  as a function is not very 
well determined on the negative side: our usual set theory is not symmetric 
in its use of true and false. 

Now the system New Foundations of Q m  (1944) (see Q m  (1953) or 
(1963) for the history of his system) was supposed to restore the true-false 
symmetry by a different kind of restriction on the comprehension axiom. 
One would hope that Quine’s theory would give at once a theoretical basis 
for a theory of combinators. But it does not-at least if one construes the 
word “function” the way Quine does as a set of ordered pairs. The 
comprehension terms needed for the combinators are simply not “strati- 
fied” (in Quine’s well-known terminology). And why not? Because func- 
tions are binary relations and New Foundations is not a suitable system for 
a general “type-free’’ theory of binary relations. 

This is a, perhaps, not much remarked fact, but it is very easy to explain. 
Quine’s theory looks type free, but-sadly-this is only an illusion. When 
we restrict attention to one-place predicates determined by stratified for- 
mulae, then it is very true that Quine lets us be ambiguous as to type. We 
can give the free variable any type we want and then start counting up and 
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down from there. (“Negative” types are permitted, if we like.) When, 
however, we come to two-place predicates, then the story is quite different. 
There are two free variables to cope with now. We can slide the type 
indices up and down the scale, but in general we can never alter the 
numerical value of the difference between the types of the two variables. In 
other words, though Quine was successful in banning type distinctions for 
sets (one-place predicates), he still is faced with infinitely many type 
distinctions for binary relations. Thus, for example, the relations = and E 
of equality and membership are of essentially different type in Quine’s 
theory: the type difference is 0 in the first case, 1 in the second. 

The reader has surely remarked by now that the theory of continuous 
functions employed in this paper could have been carried out equally well 
in New Foundations. In fact, there is a definition of ordered pair in New 
Foundations so that the formula z = ( x , y )  is stratified with the three 
variables all of the same type; moreover, all objects of the theory are 
ordered pairs, i.e. V = V X V. Though I have not carried out the details, I 
do not think it would be difficult to change the definition a little so that we 
could say V=V*. With this understanding, all the basic definitions of this 
paper would go through, since the defining formulae we have used here are 
stratified; in particular Z =  X (  Y )  is stratified with all variables of the same 
type. This is nice, but why does it not settle the question of the relationship 
of set theory and combinatory logic? 

The answer lies in the word “continuous.” In order to have the 
function-theoretic comprehension principle ( p )  by our approach, we had 
to make the restriction that X H T [ X ]  defined a continuous set mapping. 
The kind of comprehension terms needed for set theory (particularly those 
with quantifiers) arejust not continuous. We seem to have the choice: 

lots of sets but no combinators 
or 

lots of combinators but few sets. 
By “set” here we mean the characteristic functions of a set represented by 
a function of the theory. This is no proof that there is no good mixture, but 
there does seem to be some evidence that the two notions of function in 
the two kinds of theories are not quite the same. Combinators in the model 
of this paper behave more like the classes of the Von Neumann- 
Bernays-Godel theory. People have tried to make classes self-applied, but 
a “canonical” theory has not been found that has won general favour. Just 
as we could carry out the construction in Quine’s system, we could have 
worked within VBG class theory and spoken about continuous class 
functions. There is a chance that this might lead to some axiomatic niceties 
and produce a blend of Curry and Church with Von Neumann- 
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Bernays-Godel, but the author is not so certain the effort is worth the 
trouble. (Such a study might be worth a Master’s thesis, however. The 
candidate should recognize that there are degrees of continuity, and that in 
this paper we have only employedfinitary continuity. In a full class theory 
there are transfinite notions of continuity that would probably be more 
useful.) 

Aside from the question of what to do next-if anything-one might 
ask: “What is special about the combinatory logic of New Foundations?’ 
But, as we have no models for Quine’s theory, there might not be much to 
say. (The models of JENSEN (1969) for the theory with atoms could, 
however, give something new.) A more interesting question might come out 
of the Von Neumann-Bernays-Godel set/class theory. 

I believe I can now also make clearer my attitude toward type theory that 
Curry discusses in Section 9 of his paper. Professor Curry recalls the harsh 
tone of SCOTT (1969), written just a few weeks before I discovered the first 
model construction. The paper was therefore never published, and I 
recanted on some of my remarks. What I especially reputiated was my 
feeling (at one time held very strongly) that combinatory logic did not make 
good mathematical sense at all-for instance, in not linking up with the 
ordinary theory of functions: continuous real-valued functions come to 
mind. This is not an issue of set-theoretic foundations vs. function-theore- 
tic foundations. It is just a question of having some interesting mathemat- 
ics. Well, on that score the situation has changed: at least I now know how 
to embed every topological space (along with its function space) into a 
model of combinatory logic (see SCOTT (1972)). 

But, really, nothing has changed in my view since 1969 as regards type 
theory. I assert: it is impossible to eliminate from logic and mathematics ALL 
type distinctions. As has been illustrated above, certain types can be 
“confused” and then objects of other types can be “forgotten”, but no 
magic so far has ever made a set A and its powerset PA equal. Some types 
are distinct whether anyone chooses to discuss the difference or not. I 
certainly did not mean to say in 1969 that we need exactly Russell’s theory, 
but I did mean-and still mean-that the kind of type difference that 
Russell recognized will always be present somewhere in a theory of logical 
objects. Whether the flexibility of combinatory logic will soften the pain of 
living with these (necessary) distinctions remains to be fully demonstrated 
in my opinion. 

Some comment is also required on Curry’s remarks on conceptualization. 
We read (Section 10): 
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“While it is true that concocting formalisms entirely without regard to interpretation is 
probably fruitless, yet it is not necessary that there be “conceptualization” in terms of 
current mathematical intuitions. In fact, mathematical intuition is a result of evolution. 
Mathematicians depend on their intuitions a great deal; let us hope they always will. 
But the mathematical intuitions of today are not the same as those of a thousand years 
ago. Combinatory logic may not have had a conceptualization in what seems Scott’s 
sense; but it did have an interpretation by which it was motivated. The formation of 
functions from other functions by substitution does form a structure, and this structure 
it analyzed and formalized. For progress we need the freedom to let our intuitions 
develop further; this included the possibility of formalizing in new ways.” 

First “evolution”: Though geometry has evolved over 2000 years and the 
attitude toward the concept of number has radically altered, still we can 
sense the continuity of ideas. The Pythagorean Theorem is still true in 
Euclidean geometry and the old proofs still stand, even though the Greeks 
might not have been happy with a proof by analytic geometry. What I 
always found disturbing about combinatory logic was what seemed to me 
to be a complete lack of conceptual continuity. There were no functions 
known to anyone else that had the extensive properties of the combinators 
and allowed self-application. I agree that people might wish to have such 
functions, but very early on the contradiction found by Kleene and Rosser 
showed there was trouble. What I cannot understand is why there was not 
more discussion of the question of how the notion of function that was 
supposed to be behind the theory was to be made even midly harmonious 
with the ‘‘classical’’ notion of function. The literature on combinatory logic 
seems to me to be somehow silent on this point. Perhaps the reason was 
that the hope of “solving” the paradoxes remained alive for a long time 
-and may still be alive. Perhaps the reason was that many people gave up 
working in the theory. Whatever the reason, I do not think I am reading 
the record unfairly. 

Next “substitution”: This is not the place to discuss the well-taken 
criticisms of the complexity of substitution in the formulation of rules in 
formal theories, nor do we have time to discuss the pros and cons of real 
and apparent variables and a logic without variables. The question I have 
about basic motivation concerns the “structure” Curry mentions in the 
quote given above. What structure??? I agree that we can regard Group 
Theory as an analysis of the structure of bijective functions under com- 
position, Boolean Algebra as an analysis of sets under inclusion, Banach 
Space Theory as an analysis of functions under convergence of infinite 
series, etc. etc. But Combinatory Logic? It just does not seem to me to be a 
sound step in analysis to say: “We now permit our functions to be 
self-applied.” Just lke that. Clearly, after seeing so many analogous com- 
position operations of different types, we would dearly wish to put them all 
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into one big B; but the step to B(B)(B), though it may be a small step for 
Curry, does seem like a big step for the rest of us-especially in the 
shadow of the paradoxes. 
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Appendix: Some axioms 

Throughout the paper we have alluded to various laws of combinators 
and A-expressions without being very systematic; thus, it would seem 
helpful to collect together what is essential by way of formal properties. In 
the following list, we have tried to follow Curry’s notation for the names of 
laws as closely as possible. However, the theory of this paper takes C 
rather than = a primitive and defines the latter. When laws are 
strengthened by the use of c we have added an asterisk; in the one case of 
a weakening we have added a minus to the name. 
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The last law has a special character, and the reader might wish to leave it 
off in view of the large number of models in which it fails. It should also 
be kept in mind that Curry also formulates his laws as rules; we on the 
other hand in speaking of models have been thinking in terms of first-order 
theories and the usual notion of truth in models. Nevertheless, our models 
obviously give interpretations of (some of) Curry’s systems. We have also 
not had time to discuss it here, but the above system is more general than 
the models of this paper in that we have not formulated principles 
corresponding to the fact that PA is an atomic Boolean algebra-indeed 
there are any number of interesting models of the above which do not form 
Boolean algebras under c. We have not had time here either to investigate 
other primitives corresponding to the way in which A = A *  was built from 
sequences. Finally, we should remark that it is known that the above 
system is weak, because, with the introduction of S and K and with a 
definition of A, the whole system is finite& axiomatizable. 

Notes added in Proof (February 1980) 

I am much obliged to Professors Church, Curry, and Seldin who wrote 
me comments and corrections to the original manuscripts. In particular 
Professor Church wrote briefly to the editors on 2 June 1979 as follows: 

To the best of my recollection I did not become acquainted with Frege in any detail 
until somewhat later than the period about which Scott is writing, say 1935 or 1936. 
N o  guarantee for ths, it is just a recollection of somethmg never accurately recorded. 
But I was attracted to Frege because he does give priority to functions over sets, and 
his system can be made consistent (presumptively) by imposing a simple type theory. 
To this I would now add that no doubt such a system can be given as much 
set-theoretic strength as desired by adjoining strong axioms of infinity. 

On 1 May 1979 Professor Curry wrote me a long letter explaining his 
attitudes toward various of the points I had brought up. I hope to take 
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account of these remarks in future publications. In the meantime, however, 
it seems useful to quote two technical remarks from his letter bearing 
directly on the details: 

Concerning p. 225, my derivation of the inconsistency in CURRY and FEYS (19583, 
pp. 258-260 (which came originally from JSL 7, pp. 115-117 (1942) is not exactly a 
simphfication of the proof of Kleene and Rosser. I assumed the existence of the 
combinator K, whereas they did not, so that the result is, at least superficially, weaker. 
In his thesis (1968), pp, 19f, Bunder showed that, if K is present, the Kleene-Rosser 
theorem follows from my assumption. A simplified derivation of the actual Kleene- 
Rosser theorem has not yet, to my knowledge, been given. 

Concerning p. 238, t h ~ s  is not exactly the way I discovered Y. I am not sure just how 
the discovery was made, or when I adopted the letter “Y” for it. To settle this would 
require prolonged search in my cellar; which is hardly worth while. I think that the 
treatment in CURRY and FEYS (1958, 55G) is fairly close to the original approach. This 
is essentially as follows: If F is the Russell function and N is negation, then 

Fx = N ( x x ) .  

But 
N(xx)=BNxx=W(BN)=BWBN. 

We thus get the paradox by taking 
F=BNBN. 

To get Y we just express this FF as a function of N. There are various ways of doing 
this. One way given in CURRY and FEYS (1958, §5G), is 

Y = WS(BWB). 

However I do not think I used S in my earliest work; I dld not appreciate its 
potentialities until later. Another possibility is 

Y = W(B(C(BWB))(BWB)). 

Your treatment may be essentially isomorphc, so to speak, to this, but it seems strange 
to me. (At a seminar at Harvard about 1926 Whitehead cited Suzanne Langer for the 
functional (or predicate) form of the Russell paradox; but I think I once saw it in 
Russell‘s Principles of Mathematics.) 
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