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1. Original sin of the formal logician. Zest for both system and 
objectivity is the formal logician's original sin. He pays for it by constant 
frustrations and by living ofttimes the life of an intellectual outcaste. The 
task of squeezing a large body of stubborn facts into a more or less rigid 
system can be a painful one, especially since the facts of mathematics are 
among the most stubborn of all facts. Moreover, the more general and 
abstract we get, the farther removed we are from the raw mathematical 
experience. As intuition ceases to operate effectively, we fall into many 
unexpected traps. The formal logician gets little sympathy for his frustra
tions. He is regarded as too rigid by his philosophical colleagues and too 
speculative by his mathematical friends. The life of an intellectual outcaste 
may be a result partly of temperament and partly of the youthfulness of 
the logic profession. The unfortunate lack of wide appeal of logic may, how
ever, be prolonged partly on account of the fact that very little of the well-
established techniques of mathematics seems applicable to the treatment 
of serious problems of logic. 

The axiomatic method is well suited to provide results which are both 
exact and systematic. How attractive would it be if we could get an axiom 
system in which all the axioms and deductions were intuitively clear 
and all theorems of mathematics were provable? Such a system would 
undoubtedly satisfy Descartes who admits solely intuition and deduction, 
which are, for him, the only "mental operations by which we are able, 
wholly without fear of illusion, to arrive at the knowledge of things." 
Indeed, according to Descartes, intuition and deduction "are the most 
certain routes to knowledge, and the mind should admit no others. All the 
rest should be rejected as suspect of error and dangerous."2 

2. Historical perspective. Euclid's unification of masses of isolated 
discoveries in Greek elementary geometry was undoubtedly the first 
impressive success in systematizing mathematics. In a way it came about 
quite naturally. Of the four hundred sixty-five propositions in Euclid's 
Elements, some are quite obvious to our geometrical intuition, some are not 
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so obvious. Confronted with the existing proofs of the less obvious by the 
more obvious, it was natural to ask how the various theorems are in
terrelated. Then it became mainly a matter of perseverance and acuteness 
to get the theorems arranged the way Euclid actually did arrange them. 

There are, however, several points worth remarking. In the first place, 
systematization calls for more than the ability of a good librarian. For 
example, it was not until the nineteenth century that Pasch first formulated 
axioms concerning the concept "between" which had been tacitly assumed 
but not explicitly stated in Euclid. Moreover, a field has often to be de
veloped very thoroughly before it is ripe for a systematic and rigorous 
organization. The history of the calculus illustrates this point clearly: 
founded in the seventeenth century, rapidly expanded in the eighteenth, 
the calculus got acceptable foundations only in the nineteenth century and 
even today logicians generally have misgivings on the matter or, like 
Weyl, still think that analysis is built on sand. 

During the nineteenth century, the attempts to found analysis on a 
reliable basis went generally under the caption "arithmetization of ana
lysis." It is well known that Cauchy, Weierstrass, Dedekind, Cantor all 
made important contributions to this program. Indeed, their results were 
so well received among mathematicians that in 1900, Poincare asserted: 
"Today there remain in analysis only integers and finite or infinite systems 
of integers, interrelated by a net of relations of equality or inequality. 
Mathematics, as we say, has been arithmetized. . . .We may say today 
that absolute rigour has been attained."3 

If by "arithmetization" is meant merely the elimination of geometrical 
intuition, then the success is hardly disputable. If, on the other hand, by 
"arithmetization" is meant a reduction of analysis to a theory of integers, 
then the matter becomes more involved because not only integers but also 
"finite or infinite systems of integers" are needed. Nowadays it would be 
more customary to refer to these "systems" as sets or classes. What is 
accomplished is not the founding of analysis on the theory of integers alone, 
but rather on the theory of integers plus the theory of sets. Therefore, 
the problem of getting a satisfactory theory of real numbers and real 
functions is not solved but shifted in a large part to the problem of finding 
a satisfactory theory of sets. And, as we know, to get a wholesome set 
theory is no small matter. 

3. What is a set ? More explicitly, to get a rigorous basis of the calculus; 
an exact theory of the continuum is needed. Since real numbers can be 
regarded as arbitrary sets of rational numbers or positive integers which 

3 Du rdle de I'intuition et de la logique en mathimatiques, Compte-rendu du Ilieme 
Congres International des MatMmaticiens, 1900, Paris (1902), pp. 200-202. 
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satisfy a few very broad conditions, this means that an exact development 
of the calculus logically calls for a general theory of sets. 

There is also another way in which problems of ordinary mathematics 
should have led in the nineteenth century to queries as to what a set is. 
There were frequent occasions to consider arbitrary curves or arbitrary 
functions of real numbers. For example, is an arbitrary function repre-
sentable by a trigonometric series? What functions are integrable? Many 
serious mathematicians were busy with such problems. Yet to answer these 
questions, it would appear prerequisite to have a pretty good idea of what 
an arbitrary function or set is. 

It is of interest to note that as an historical fact mathematicians often 
speak of arbitrary functions and arbitrary curves when they have no precise 
definition of these notions and actually have in mind only certain special 
functions and special curves. The great discrepancy between the really 
arbitrary and the moderate arbitrariness which is actually needed in 
living mathematics explains the possibility of various basically different 
systems of set theory which compete to provide the true foundations of 
mathematics. 

In the nineteenth century nobody paused to supply an exact definition of 
the notion of arbitrary set or arbitrary function. To do so would have re
quired a thorough examination of all the means of definition at their 
disposal. There was at that time neither reason to suppose this work ne
cessary nor enough advance preparation for carrying it out. Only after 
the discovery of paradoxes around 1900 was it realized that not all apparent 
laws or definitions could define sets and that some restriction on the per
missible means of defining sets was necessary. 

The historical course of events was different from the logical process of 
descending from the more abstract to the less general. Cantor did not have 
a general set theory to begin his investigations but was rather led to the 
study of point sets (sets of real numbers) by a comparatively more concrete 
problem which arose quite naturally from ordinary mathematics. 

The problem is that of representing functions by trigonometric series 
which interested many a mathematician when Cantor began his research 
career around 1870. In trying to extend the uniqueness of representation 
to certain functions with infinitely many singular points, he was led to the 
notion of a derived set which not only marked the beginning of his study 
of the theory of point sets but led him later on to the construction of 
transfinite ordinal numbers. 

Such historical facts ought to help combat the erroneous impression 
that Cantor invented, by one stroke of genius, a whole theory of sets which 
was entirely isolated from the main stream of mathematics at his time. In 
addition, it may be interesting to recall that mathematicians such as Heine 
and Dedekind were familiar with the problems which Cantor treated in his 
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set theory and quite capable of handling them had they wished to. Indeed, 
du Bois-Reymond discovered independently of Cantor the notion of derived 
set, as well as the notion of derived set of infinite orders which led Cantor to 
the transfinite ordinals of the second number class. Moreover, du Bois-
Reymond anticipated Cantor4 by about twenty years in using the diagonal 
argument now generally attributed to Cantor. The main reason why Cantor 
has been so much more influential is probably his ability to free himself 
gradually from applications and develop the theory of sets more and more 
for its own sake. Only in thus generalizing and following up logical con
clusions everywhere, did Cantor become the founder of set theory. 

4. The indenumerable and the impredicative. The notions of 
denumerability and well-ordering were of central importance for Cantor: 
the former is the pillar of his theory of cardinal numbers, the latter of his 
theory of ordinal numbers. 

In inventing set theory, the two most remarkable jumps which Cantor 
made were: the invention of transfinite ordinal numbers of his second 
number class, and the use of indenumerable and impredicative sets. The 
first is now known to be harmless and useful (especially in certain meta-
mathematical considerations), while the second remains a mystery which 
has shed little light on any problems of ordinary mathematics. There is no 
clear reason why mathematics could not dispense with impredicative 
or absolutely indenumerable sets. 

Cantor gives two proofs of the indenumerability of real numbers and 
one proof of the indenumerability of his second number class. All these 
proofs make use of impredicative sets. 

Since not everybody is familiar with the nature of impredicative de
finition, it may be worthwhile to pause and review the well-known diagonal 
argument for proving the indenumerability of real numbers. 

To prove this, it is, as we know, sufficient to prove that the set M of all 
sets of positive integers is not denumerable. Cantor's proof for this is as 
follows. Suppose there were a one-to-one correspondence f(x, k) or x = f(k) 
between M and the set P of positive integers, so that for every given positive 
integer k0, there is a set f(k0) in M which is the image of k0. For each positive 
integer k, either k belongs to its image f(k) or not. Consider the set N of all 
positive integers k such that k does not belong to f(k). N would be a set of 
positive integers and therefore a member of M. By hypothesis, there would 
be a positive integer n such that N is f(n). Either n belongs to f(n) or not. 
If n belongs to /(«), then, by the definition of N, n does not belong to /(«), 

4 See, e.g., P . DU BOIS-REYMOND, Vber asymptotische Werte, infinitdre Approxi-
mationen und infinitdre Auflosung von Gleichungen, Mathematische Annalen, vol. 
8 (1875), pp. 363^14. 
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/(«) being N. If N does not belong to f(n), then by the definition of N again, 
n belongs to /(«). Hence, we obtain a contradiction. It follows that given 
any one-to-one correspondence between positive integers and sets of positive 
integers, we can always find a set of positive integers which is different 
from all the sets already enumerated. 

We can make a number of different comments on the arguments. From 
the proof, it certainly follows that given any law which enumerates sets of 
positive integers 

%1> ^2' %3' • • • > 

we can find a set x which is different from every one of the above. Moreover, 
given x and the sets xv x2, • • • , we can also find a law which enumerates 
xv x2, . . . together with x: 

X, X-y, X%, Xg, . . . ] 

but then there is another set y which is different from all these. Then we 
can also find another sequence which includes y and all terms of the previous 
sequence. And so on. 

From the fact that no enumeration can exhaust all sets of positive 
integers, Cantor infers that the set of all sets of positive integers is absolutely 
indenumerable. In order to justify this inference, we have to assume that 
there is a set which includes all sets of positive integers, or that there 
is a law which defines a set that includes all sets of positive integers. 
Constructive set theory refuses to recognize any such set or any such law. 
While the constructive viewpoint accepts totalities of laws relative to 
different stages of construction, it rejects a closed totality which excludes 
possibilities of further construction. 

If, however, we do allow that there is a set M of all sets of positive integers, 
then the above argument shows that such a set M is absolutely inde
numerable. Moreover, we then see that the argument uses what is known as 
an impredicative definition to define the set N of positive integers. Thus, 
by definition, k belongs to N if and only if there exists a set K in M such 
that K is f{k) and k does not belong to K. This is impredicative because 
in defining N, we make use of the totality M which contains N as a member. 
Thus, in order to determine whether a given k0 belongs to N, we have, so to 
speak, to check through all members of M (including N itself) to see whether 
some one of them is f(k0) and yet does not contain k0 as member. Hence, in 
order to define N, N must already be there. This is clearly inacceptable 
from a constructive viewpoint according to which the set only comes into 
being by a definition. Only if we take the sets as somehow existing before 
we say anything about them, can we accept such definitions: and then, not 
as definitions, but as descriptions of properties which sets possess by 
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themselves, or as directions for picking suitable sets from a huge ocean 
containing all sorts of familiar, as well as curious, fish. 

The situation is quite similar with Cantor's proof that the second number 
class is not denumerable. 

It is no accident that all proofs of absolute indenumerability use im-
predicative sets. Indeed, it is at least intuitively plausible that all predicative 
sets are denumerable. We may also recall that Russell's paradox was first 
obtained from analysis of Cantor's diagonal argument and uses an im-
predicative set, too. 

5. The limitations upon formalization. A satisfactory axiom-
atization of set theory seems to be the most hopeful way of carrying out 
the ambitious program of systematizing all mathematics. At the beginning 
of the century the discovery of paradoxes plus the popularity of axiomatic 
method in geometry and arithmetic led quite naturally to attempts to 
construct axiom systems for set theory in which as much of Cantor's 
"naive" theory as possible, but of course none of the paradoxes, is to be 
derived. As a result, we possess today a number of axiom systems for set 
theory. 

In order to formalize mathematics in axiomatic set theory it is customary, 
on account of the great diversity of content, to make certain preliminary 
representations or reductions. For example, geometrical points can be 
represented by real numbers, functions and relations can be construed 
as sets (of couples, etc.), numbers can be identified with certain special 
sets, and so on. With these reductions, it is often asserted and believed 
that each of several standard axiom systems of set theory is adequate to 
the development of all mathematics. For example, the system of Principia 
mathematica, or the system constructed by Zermelo and extended by his 
successors. 

The actual derivation of mathematics from any such system is long 
and tedious. It is practically impossible to verify conclusively any claim 
that this and that branch of mathematics, with all their details, are derivable 
in such a system. It is also hard to refute such a claim for that would 
require the discovery of some premise or principle of inference, which 
has so far been tacitly assumed but unrecognized. 

There are, nonetheless, at least three rather general objections to claims 
of this sort. In the first place, none of these standard systems is known 
to be free from contradictions. In the second place, each system can easily 
be expanded, for instance, by adding a higher level of sets, to a new system 
which at the same time contains new theorems and yet can be proved 
to be no less reliable than the original. Indeed, a proof can be given in 
each case for the conclusion that the extended system is consistent, provided 
the original is. Moreover, the extended system can again be similarly 
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extended; the process of such extensions can be continued indefinitely. A 
closely related difficulty is that all these systems are subject to the Godel 
imcompleteness. A third objection is that none of these systems can supply 
all the set theory as originally constructed by Cantor. Specifically, this has 
to do with Cantor's notion of indenumerable sets and his use of impredicative 
definitions. While Cantor asserts the existence of sets which are absolutely 
indenumerable, any of these axiom systems can supply only sets which are 
indenumerable relative to the means of expression in the system. Such sets 
are denumerable in the absolute sense, as it is possible to enumerate the 
elements of each by talking about the original axiom system. 

There are, largely as a result of the first objection, numerous attempts 
to construct artificial systems which are both demonstrably consistent 
and also adequate to the development of the "principal" (or "useful") 
parts of mathematics. Most of these systems modify our basic logical 
principles such as the law of excluded middle and the principle of exten-
sionality (for sets), and it is not easy to become familiar with them. So far 
as I know, none of these has been accepted widely. 

The attitude toward the second and the third objections is usually 
either one of indifference or one of resignation. These objections, it is 
argued, need not be taken seriously, since what we have is already sufficient 
for all ordinary purposes and the creation of new inadequacies by considering 
the system as given is quite idle. Others contend that these difficulties 
are the price which we have to pay for using a formal language or using an 
axiom system. 

In what follows an approach will be suggested in outline which is both 
natural and not subject to the above three objections. 

6. A constructive theory. This is not the place to describe the formal 
details of the constructive theory which is claimed to possess all the won
derful properties of naturalness, adequacy, and demonstrable consistency. 
The theory will only be roughly sketched and an attempt will be made to 
make it appear plausible that the theory can do the things which it 
is supposed to do. I possess a more exact treatment of the matter which I 
hope will in the near future become available for scrutiny to those who 
are interested. 

The system or theory will be denoted by the capital Greek letter sigma S. 
It has in the lowest order (the 0-th order) a denumerable totality consisting 
of (say) all the positive integers or all the finite sets built up out of the 
empty set. In the first order are these same sets plus sets of them which can 
be defined by properties referring at most only to the totality of all sets of 
the 0-th order (or, in other words, by formulas which contain no bound 
variables of the first or a higher order). Similarly, for every positive integer 
n, the sets of order n + 1 include all sets of order n together with sets of 
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them defined by properties referring at most only to the totality of all sets 
of the n-th order. The sets of order to include all and only sets of the finite 
orders. For any ordinal number a + 1, the sets of order a + 1 are related 
to those of order a in the same way as the sets of order n -\- 1 to those of 
order n (n a nonnegative integer). For any ordinal number /? which is the 
limit number of a monotone increasing sequence av a2, . . . of ordinals, 
the sets of order /? are related to the sets of orders alt ct2, . . . in the same 
way as the sets of order a> are related to those of finite orders. In short, 
sets of orders higher than 0 are constructed according to the Poincare-
Russell vicious-circle principle. 

All the ordinal numbers which are used belong, of course, to what is 
known as Cantor's second number class. Moreover, we use only "con
structive" ordinals. What a constructive ordinal number is presents an 
interesting and difficult problem. A simple and straightforward charac
terization of the totality of constructive ordinals is likely to get into the 
difficulty that the diagonal argument would produce a new ordinal number 
which should again be regarded as constructive. Let us assume for the 
moment that a suitable notion of constructive ordinals is given. Longer 
discussion of the topic will be included in a later section. We observe 
merely that in any case the usual ordinal numbers of Cantor's second 
number class, such as <w2, the e-numbers, all are constructive ordinals. 

The axioms of the theory 2 can be briefly described as follows. All axioms 
and rules of inference of the standard quantification theory (predicate 
calculus) hold with regard to sets of each order. Set terms or abstracts of 
different orders are included in the primitive notation. Two sets xa and yp 

are equal or xa = yp if and only if they have the same extension; or, more 
exactly, if a ;> /S, every set za belongs either to both xa and y? or to none. 
Special axioms of the theory are: 

A. Identity: for every y, y ;> a, y ;> ft, if xa = yfi and xa e zy, then 

B. Infinite summation: for every limiting ordinal number a, if /? < a, 
then for every x^, there is ya, such that ya = Xp. 

C. Abstraction: for every formula F{xe), every y^ belongs to XpF(xp) 
if and only if F(y?). 

D. Foundation: if xa is not empty, then there is some ya such that 
ya e xa, and ya and xa have no common member. 

E. Bounded order: if x e y and y is not of higher order than x, then there 
exists a set z of lower order than y such that x = z. 

F. Limitation: see I I I in the next section. 
The ideas employed in the construction of the theory S are not new. 

Russell, Weyl, Chwistek, Lorenzen all have developed mathematics along 
somewhat similar lines. I shall not enter into detailed comparison of the 
present approach with works of these authors, except merely to remark that 
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Russell and Weyl do not even claim adequacy of their systems for the 
development of analysis, that I have not been able to understand Chwistek, 
and that Lorenzen has little regard for formalization. Many of the con
clusions obtained by using the theory £ are very much the same as what 
Lorenzen arrives at from a somewhat informal approach. 

The theory 2 is not exactly a logistic system but rather a system schema. 
It is the union of all formal systems 2a, where a is an arbitrary constructive 
ordinal, and 2a deals with all and only those sets which are of order a or 
less. By referring to these partial systems Sa, we shall be able to make 
many quite exact statements about the comprehensive theory S. 

7. The denumerability of all sets. One peculiarity about the theory 
S is that all sets of 2 are enumerable in S. Indeed, it is possible to enumerate 
all sets of any given order a by a function of order a + 2. By using standard 
methods for giving Tarski truth definitions and constructions employed 
by Bernays in his demonstration of a general class metatheorem from a 
finite number of axioms, we can prove, at least for a not too large (say 
less than co2), the following two results: 

I. For each a, we can find a function Ea of order a + 2, such that Ea 

enumerates all sets of order a; or, in other words, the domain of Ea is the 
set of all positive integers and its range is the universal set Va consisting 
of all sets of order a. 

II. For each a, we can find a truth definition of Sa in £a+2 and formalize 
a consistency proof of 2a in 2a + 2 (i.e., prove Con(Sa) in 2a+2). 

Incidentally, it may be of interest to compare these with similar results 
on ordinary predicate calculi in which impredicative definitions are allowed. 
For example, consistency of the predicate calculus of type n can be proved 
in that of type n -\- 1, by the use of impredicative sets; while here we have 
to prove the consistency of Sa in 2a+2. Both in proving the consistency of 
Sa and in enumerating Va, we have to use sets which take sets of order a 
as members but are defined with the help of bound variables of order a + 1. 
While these sets are impredicative sets of type a + 1 according to their 
members, they are sets of order a + 2 according to their definitions. That 
is why in both I and II we have to use the order a -f- 2 instead of a + 1. 

Using the functions Ea, we are able to state powerful axioms of limitation 
which stipulate that in the theory 2 we recognize no sets other than those 
explicitly enumerated by the functions Ea (compare also Chwistek's axiom of 
enumerability and Fitch's hypothesis of similarity5): 

5 FREDERIC B. FITCH, The hypothesis that infinite classes are similar, this.JOURNAL, 

vol.4 (1939), pp. 159-162. 
LEON CHWISTEK, Vber die Hypotheses der Mengenlehre, Mathematische Zeit-

schrift, vol. 25 (1926), pp. 439-473. 
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III. For each order a and each set xa, there is a positive integer m such 
that Ea(m) is xa. 

From these axioms of limitation, it becomes possible to prove general 
theorems on all sets of each order by using mathematical induction. Since 
Ea well-orders all sets of order a, certain axioms of choice can be proved. 
Moreover, it is clearly also possible to enumerate all sets of order a which 
are ordinal numbers. It follows that we can, in 2a+2, find a one-to-one 
correspondence between all sets of order a and all sets of order a which are 
ordinal numbers. One can also prove, by the diagonal argument, that no 
such correlation exists in Sa itself. Therefore, the continuum hypothesis 
(viz. the hypothesis that the set of all sets of order a has a different car
dinality than the set of all sets of order a which are ordinal numbers) is 
provable or refutable according as whether equi-cardinality is defined 
by the existence of a correlation of order a + 2 or one of order a. In short, 
we have: 

IV. Axioms of choice are provable in 2. 
V. Certain forms of the continuum hypothesis are provable in 2 ; 

certain other forms are refutable in S. 
Moreover, since Con(Ea) is provable in Sa+2, the Godel undecidable 

propositions of each Sa are provable in 2a+2- Hence, the only possible way 
to construct a Godel proposition which is undecidable in S would be, so 
far as I can see, to find a sequence of increasing constructive ordinals 
alt a2, . . . such that its limit is no longer a constructive ordinal and con
sider the union of Sa , Sa , . . . ; yet there is, so far as I can see, no apparent 
way to show that such a union is again a formal system or a system to 
which Godel's constructions are applicable. We have, therefore: 

VI. Godel's famous constructions do not yield directly any propositions 
which are undecidable in the theory S. 

It would be of interest to investigate whether there might not be some 
indirect means of constructing undecidable propositions in S. 

Developing real numbers in some standard fashion6, we can also prove 
standard theorems of classical analysis in the theory S. For example, we 
can prove, with pretty much the traditional arguments, the theorem of least 
upper bound, the Bolzano-Weierstrass theorem, and the Heine-Borel theorem. 

This is actually not surprising since we do not hesitate, when necessary, 
to use sets of higher orders. For example, in the general case, the least 
upper bound of a set whose members are of order a is a set of order a -f- 1. 
Both Weyl and Russell were aware of such possibilities but they found the 
use of higher orders objectionable. This and related points will, in the next 
section, be discussed at great length. 

6 E.g., as in Bernays' series of articles on axiomatic set theory in this JOURNAL, 
vol. 2 (1937); vol. 6 (1941); vol. 7 (1942); vol. 8 (1943); vol. 13 (1948); vol. 19 (1954). 
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Let me insert a few words on the use of indenumerablesets in measure theory. 
It is widely known that in measure theory there is a theorem stating 

that every denumerable set is of measure zero. It would seem that in the 
theory S where all sets are denumerable, the whole measure theory would 
collapse. In actuality, however, this is not the case because, although there 
are no sets which are absolutely indenumerable, for each a, there are sets 
of order a which are indenumerable by any functions of order a. And the 
notion of relative indenumerability is sufficient to provide us with sets 
of nonzero measures for measures defined on each given level. 

Thus, let us recall the standard proof of the theorem. Given a denumerable 
set M of points 

%1) %2> %3> • • • > 

we can choose an arbitrarily small e and cover each xt by the interval from 

Xi to x, A r, then it is easy to see that the sum of these intervals is 
* 2' 2* 

no greater than 2e and that the measure of the original set is smaller than 
2c Hence the set M has measure zero. 

For each a, this proof can be carried out in Sa only if the given denumer
able set M of points can be enumerated within Sa. It is perfectly possible 
for the same set to have measure zero in 20 + 1 and a nonzero measure in Sa. 

I think this situation is completely satisfactory. We even get an ex
planation of the relation between the continuous and the discrete (i.e., 
denumerable). A set of points is continuous only relative to our knowledge 
or our power to isolate the numerous points. What is seen as continuous in 
a less powerful set theory becomes discrete as we come to use a richer set 
theory. 

8. Consistency and adequacy. From the known consistency of the 
ramified theory of types it is natural to expect the consistency of the 
theory S. Indeed, the consistency of each system 2 a can be proved similarly 
to that of the ramified type theory. Since the theory S is the union of all 
systems Sa, the consistency of S follows immediately. 

We can prove the consistency of each system Sa by describing more 
in detail its intuitive model. The arguments are similar to Fitch's proof7 

of the consistency of the ramified theory of types. 
Or, we can also give a proof-theoretic consistency proof of each system Sa. 

Such a proof is analogous to Lorenzen's and Schiitte's finitist proofs8 of the 
consistency of the ramified type theory. 

' The consistency of the ramified Principia, this JOURNAL, vol. 3 (1938), pp. 140-149. 
8 PAUL LORENZEN, Algebraische und logistische Untersuchungen iiber freie Verbdnde, 

this JOURNAL, vol. 16 (1951), pp. 81-106; KURT SCHUTTE, Beweistheoretische Unter-
suchung der verzweigten Analysis, Mathematische Annalen, vol. 124 (1951-52), 
pp. 123-147. 
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It is very difficult to explain exactly the sense in which Lorenzen's 
proof is finitist. But the following vaguely specified difference between it 
and Fitch's proof is clearly relevant. 

Given any proof in the formal system of the ramified theory of types, 
Lorenzen's procedure can change it effectively into a different proof in 
which every line is more complicated than each of its premises (indeed, 
longer except for occasional deletion of repetitious terms). In other words, 
we get cumulative proofs. It is true that these proofs can contain potentially 
infinitely many propositions, e.g., in order to prove (m)m ;> 0, we use 
0 ^ 0 , 1 ;> 0, 2 ;> 0, etc. Nonetheless, each application of the rule of 
infinite induction is determined unambiguously by the corresponding step 
of the original proof. Consequently, the actual applications of the rule 
of infinite induction are much less unmanageable than what the abstract 
statement of the rule itself would lead us to think. 

In Fitch's proof by an intuitive model, the situation is more complex. 
It is not easy to see how we can get effectively, from a proof in the formal 
system, a corresponding proof in the intuitive model. For example, in order 
to justify that for every proposition p, 'p or not-p' belongs to the set of true 
propositions, we have to apply the law of excluded middle to the infinite 
set of true propositions and argue that either p belongs to the set, whence 
'p or not-^>' also belongs to it, or else p does not belongs to the set, whence 
not-̂ > belongs to it and hence also 'p or not-p.' It is not possible to avoid 
altogether reference to the alternative that a proposition does not belong 
to the set of true propositions (i.e., belongs to the set of propositions which 
are not true). In other words, we cannot carry out the consistency proof 
without constantly 'going out of the set of true propositions. 

Naturally the consistency proofs for 2 involve peculiar features on 
account of special characteristics of the theory. Yet it is certainly reasonable 
to expect that these proofs can be carried out. Details will not be given here. 

At several places we proved the required theorems only by ascending 
to higher orders: the axioms of choice, the reinterpretations of the con
tinuum hypothesis, the least upper bound theorem, the Bolzano-Weier-
strass theorem. For many people this seems to cut through rather than 
meet the original difficulties. 

For example, Weyl mentions in Das Kontinuum (p. 23) the possibility 
of defining the least upper bound of a given bounded set of real numbers by 
a real number of a higher order, but discarded it immediately as philoso
phically unsatisfactory. 

For a ramified analysis, an obvious difficulty which has often been 
mentioned is: since the least upper bound of a given set of real numbers is 
a real number of a higher order, so that there are necessarily infinitely 
many different orders of real numbers, how can one speak of all real numbers 
at the same time? 
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Under the approach sketched here, we have no clear idea of all real 
numbers, but, for each given a, we can consider all real numbers of order a. 
Moreover, we can use a sort of schematic method by which we discuss all 
real numbers by talking about all real numbers of each order indiscriminately. 

Nonetheless, it is not necessary to adopt this approach, if our purpose is 
just to be able to speak of infinitely many orders at the same time. Con
sider the system 2m (or, for that matter, any 2a, where a is a limiting or
dinal number). We can prove easily that for every bounded set xa of real 
numbers, there is a real number ya which is the least upper bound of xm. 
This is so, because every set xm is a set of real numbers of some finite order n, 
and its least upper bound is a real number of order n + 1 and ipso facto 
a set of order co. 

Therefore, as soon as we get to sets of order co, we can already avoid 
the necessity of ascending to any higher orders to get least upper bounds. 
Similarly, the sets needed for the axiom of choice, the interpretations of 
the continuum hypothesis, and the Bolzano-Weierstrass theorem are also 
of order co, provided each given set is of order co (and therefore of an order 
n, for some finite n). 

It follows from this remark that in order to speak of all sets of all finite 
orders at the same time, we need neither Russell's axiom of reducibility 
(see below) nor the full theory 2 which includes an indeterminate totality 
of orders. The system SM is more satisfactory than Russell's method which 
unnecessarily introduces unmanageable difficulties in connection with 
impredicative sets. The theory 2 is philosophically even more satisfying 
because it seems rather arbitrary to stop at either order co or some other 
order a. For example, the fact that 2,m is directly subject to Godel's theorems 
while the theory 2, so far as I can see, is not, is one indication of the pre-
ferableness of 2. We might say that the approach embodied in 2 is superior 
to Russell's in more than one way. 

It is customary to define real numbers as certain sets of natural numbers 
or rational numbers. Since these sets are infinite, each of them has to be 
given by a law or a principle for selecting its members. Naturally, therefore, 
how rich a theory of real numbers is depends very much on the method 
of definition we are permitted to employ. We can, of course, think of many 
curious ways of defining sets. Consequently we do not have any clear 
idea of all sets. The notion of set and thereby that of real number is relative 
to our theory of definition in the sense that different theories of definition 
would give us different theories of sets and real numbers. 

This was apparently not realized by people of the nineteenth century. They 
seem to talk as if there was a unique absolute theory of definition. Thus 
Dedekind spoke of all sets or cuts of real numbers without bothering to stop 
and examine what he meant by all. Similarly Cantor spoke of all denumerable 
sets in his proof of the indenumerability of the set of all real numbers. 
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Now, how do we know that the theory £ does give us all the real numbers 
we need in ordinary mathematics? 

If we examine the real numbers actually used in mathematics, we easily 
see that the domain has gradually been expanded. The rational numbers, 
of course. Then there were simple irrational numbers such as -y/2. The 
Greeks also considered more complex cases. In general, however, they seem 
to confine themselves to irrationalities obtained by repeatedly taking the 
square root, an operation performable geometrically by ruler and compass. 
The next logical extension is to include all algebraic numbers. There are 
also transcendental numbers, e.g., e and n. 

Since it seems natural to think that every infinite decimal defines a real 
number, it is worthwhile to get an idea of the wide range of possible laws 
or definitions for determining these decimals. We can roughly contrast 
"natural" with "artificial" definitions. The natural ones arise out of the 
actual development of mathematics, such as those for e, n, values of 
certain common functions, etc. Usually there are organic connections 
between these and our main body of knowledge so that we have more 
information about the infinite decimals and real numbers determined by 
them. The artificial ones can be manufactured by playing with accidental 
characters of notation or actuality. For example, the following infinite 
decimal, 

0.1223334444 

defined by the law that for every numeral n, n is repeated n times (for 
example the numeral 15 is written 15 times in succession). 

Or the infinite decimal obtained from that for n by substituting an 
arbitrary numeral (say 7, or 891) for every digit 1 (or 2 or 3, etc.). Obviously, 
from each infinite decimal we can in this way generate infinitely many 
artificial infinite decimals about which we know nothing apart from their 
definitions. 

A different kind of artificial definition is obtained if, for example, we 
determine 

0.a1a!ia3ai ... 

in the following manner: beginning with January 1, 2000, at is 0 or 1 ac
cording to whether or not more boys are born than girls on the i-th. day. 

From these examples it should become clear how easy it is to make 
the invention of curious infinite decimals an enduring pastime. We shall, 
however, refrain from self-indulgence and confine ourselves to the natural 
definitions. 

The most efficient way of generating new real numbers is by functions. 
Thus, given a fixed subclass D of the class of real numbers (e.g., D may 
be the class of rational numbers or that of algebraic numbers) and a function 
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there is a real number y for every x in D. It may happen that for every 
x in D, f(x) is also in D. Then the function f(x) generates no new real numbers. 
However, it may also happen that for certain values of x in D, f(x) is no 
longer in D. Let D' be the class of all real numbers which are either in D 
or are the values of f(x) for some x in D. With regard to D', it may again 
happen that for some x in D', f(x) is not in D'. We can then consider a 
larger class D". And so on. In general, this process can be continued in
definitely and the sum of all such classes (call it Df) satisfies the condition 
that for every x in Df, f(x) is also in D,. 

In this way, given each fixed class D of real numbers and a function f(x), 
we can try to find the corresponding Df which in special cases may be the 
same as D. Hence, we can approach the totality of all real numbers in the 
following manner. Let us start from, say, the domain of rational numbers. 
Consider, e.g., the ordinary algebraic and transcendental functions. Let 
us add them successively and every time expand the domain of real numbers 
to get a larger one in which for every x in it f(x) is also in it. In this way, 
we reach a totality of real numbers closed with regard to a given totality 
of functions. 

No number of functions could determine all the real numbers. Yet we 
certainly want to get at least a domain of real numbers which would be 
closed with regard to all the functions we have occasion to consider in 
ordinary mathematics. Once we are sure that a certain theory of real 
numbers does provide a domain satisfying this requirement, we need not be 
too much concerned with the question how many more real numbers are 
also included. 

Therefore, in order to determine the minimum requirements that a 
theory of real numbers is to satisfy, it is relevant to consider first the 
ordinary functions in analysis. 

It is quite easy to prove that all real numbers which can be obtained 
by ordinary procedures of classical analysis can be obtained in the system 
£,„ (indeed, in a partial system, say, S5). 

There is presumably a great gap between the totality of all the special laws 
and series which we have had an opportunity to study and the totality of 
all possible laws and series which we may or may never get around to 
investigating. If so, how can we ever hope to get a satisfactory theory of 
all possible laws or definitions? 

The answer to this rhetorical question is to distinguish two types of 
theories of "all" laws. If what is desired is a theory which provides us 
with detailed information about all the possible laws concerning some of 
which we may never get such information otherwise, it would almost be a 
tautology to say that no such theory can be obtained. On the other hand, 
there is no reason why a much more modest theory would not actually 
suffice for the purpose of setting up a rigorous foundation of real numbers 
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and mathematical analysis. For example, we can employ a theory in which 
all the known laws of defining infinite decimals are included, and at the 
same time we deliberately use the word "all" ambiguously so that the door 
is open for other newcomers to join the totality of all laws of the theory. 
The theory S seems to be one such. 

9. The ax iom of reducibility. Roughly the ramified theory of types 
is equivalent to the system 2M minus the variables of order co. Russell's 
axiom of reducibility says that for every set there is a coextensional set 
which is of the order next above the highest order of its arguments. For 
example, every set whose members are objects of order 0 is, by thi.1,, co
extensional with a set of order 1. 

By the help of such an axiom of reducibility, statements about "all 
first-order functions (or sets) of m" yield most results which otherwise 
would require "all functions (or sets) of m". The axiom leads to all the 
desired results and, so far as we know, to no others. Nevertheless, Russell 
thinks that it is not the sort of axiom with which we can rest content and 
conjectures that perhaps some less objectionable axiom might give the 
results required. (By the way, Russell's original form of the axiom of 
reducibility was more complex than the currently accepted formulation, 
because Russell could not make up his mind exactly what methods are 
permitted in defining functions or sets of lowest orders. We are assuming 
that all and only methods of formal logic are admitted.) 

The purpose of this section is to argue that there is nothing wrong in 
speaking of functions or sets of all orders at the same time, and to prove 
that we do not need the axiom of reducibility at all. Thus, for example, if 
we use the variables xn, yn, zn, etc. (n — 1, 2, . . . ) to refer to sets of positive 
integers of order n, we seem to need either the axiom of reducibility or an 
infinitely long expression in order to make a statement about sets of positive 
integers of all orders. There is, however, nothing to prevent us from intro
ducing in addition, as in the system £„,, a new kind of variable xm, ym, 
zm, etc., which take all these sets no matter of what order, as values. 

Once we introduce such general variables for all sets (of whatever order), 
of a same type, we can do all the things for which the axiom of reducibility 
was originally proposed. Consequences of the axiom which are no longer 
available are precisely the results that contradict the basic spirit of the 
constructive approach, intended by Russell's theory of ramified types. 

The announced reason for introducing the axiom of reducibility was 
to enable us to talk about all sets or functions of certain given things in 
addition to all sets or functions of each given order. Let us discuss one 
by one how the use of general variables can substitute for the axiom of 
reducibility for the various situations considered by Russell. 

The first thing is with regard to mathematical induction. Russell wants 
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to say that a positive integer is one which possesses all properties possessed 
by 1 and by the successors of all numbers possessing them. If we confine 
this statement to all first-order properties xv we cannot infer, without 
using the axiom of reducibility, that it holds of second-order properties x2. 
However, using general variables xm, ym, etc., for sets of positive integers of 
all (finite) orders, we can now make the above statement with regard to all 
properties xm (of positive integers). 

A second use of the axiom of reducibility is with regard to the definition 
of identity. He defines two individuals as identical when they have the 
same first-order properties. By the axiom of reducibility, he then proves 
the theorem that two such individuals have the same properties of every 
order. In the system Z^, we can, using general variables for all properties, 
adopt his theorem as the definition of identity. Thereby the axiom of 
reducibility is no longer needed. 

A third and more important application of the axiom is in the development 
of the Dedekind theory of real numbers. Thus, if we define real numbers 
as certain sets of rational numbers satisfying Dedekind's requirements, 
then, since there are such sets of different orders, there are also real numbers 
of different orders. This, as we have observed, can again be handled in 
systems such as the system Sm. 

On the other hand, the abolition of the axiom of reducibility does entail 
the important consequence that Cantor's proof for the theorem that there 
are absolutely more real numbers than positive integers breaks down in S^, 
although, in a modified form, it can be gotten by the axiom of reducibility 
in a system with only finite orders. Indeed, it is no longer possible to prove 
the existence of any cardinal number greater than aleph-zero (the number 
of positive integers) in 2m. 

From the constructive point of view adopted by Russell, this is, however, 
not only no objection to the approach embodied in £„, but rather a point 
strongly in its favour. This is so, because in proving the existence of any 
infinity beyond aleph-zero, the impredicative definitions are indispensable, 
and impredicative definitions are precisely what Russell's theory set out 
to abolish. 

In other words, the axiom of reducibility actually serves two very dif
ferent purposes: (1) to enable us to speak of all sets or functions of certain 
things without having to enumerate the infinitely many different orders; 
(2) to enable us to introduce sets by impredicative definitions and properties. 
It seems that Russell, in trying to remedy a minor verbal difficulty, un
wittingly reintroduced impredicative definitions at a back door through 
the axiom of reducibility (indeed, introduced an assumption which embodies 
the very essence of impredicative definitions in set theory). The remarks of 
this and the preceding sections should be sufficient to establish the con
clusion that as soon as general variables are introduced, the axiom of 
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reducibility becomes unnecessary at least for all the things which it was 
originally introduced to do. 

In my opinion, the present approach also illuminates the criticism of 
Weyl by Holder in a paper of 1926.9 According to Holder, since in the 
definition of the least upper bound of a set M of real numbers the quantifi
cation may be understood as ranging over the real numbers of M only, which 
are given beforehand, and not over all real numbers, it is not true that the 
definition of the least upper bound involves a circle. If we adopt the standard 
formalization of the least upper bound theorem where we do not admit 
real numbers of different orders, Holder seems clearly wrong. But if we 
accept a constructive approach as in the present essay, then Holder is right 
because in each given set M the real numbers must be of a definite order, 
and we can define a least upper bound which is of the next higher order. 

I think Holder's remarks are very interesting for the present approach 
because they seem to show that it is quite natural to use a ramified analysis. 
We might even view the systems of this essay as, among other things, 
attempts to formalize Holder's interpretation of the classical theorem 
of least upper bound. 

10. The vicious-circle principle. The theory S is built up in ac
cordance with the Poincare-Russell vicious-circle principle. Since the theory 
of types is also based on the same principle but differs from 2 in many ways, 
it is of interest to ask whether the theory £ does not violate the principle 
in certain respects. 

Several somewhat different forms of the principle are given by Russell, 
but we can confine ourselves to the one stating that no totality can contain 
members definable only in terms of that totality. This vicious-circle principle, 
according to Russell, enables us to avoid "illegitimate totalities." It follows 
that given an open formula (prepositional function) p which either contains 
quantifiers referring to sets of order a or has its argument value referring 
to sets of order a, the set defined by p must be at least of order a -f 1. 

Thus, if we start from a given totality of basic objects and call them of 
(say) order 0, we can proceed to define sets of orders 1, 2, 3, etc. by in
troducing new variables and new abstracts at successive stages. It is natural 
to record our advance by using such order indices. When we have gone 
through all finite ordinals, there is nothing to prevent us from going to 
transfinite orders. 

Sets of order m should be all and only those which are defined in terms 
of variables and abstracts of finite orders. On the one hand, since w is 

9 OTTO HOLDER, Der angebliche circulus vitiosus und die sogenannte Grundlagenkrise 
in der Analysis, Berichte ilber die Verhandlungen der Sachsischen Akademie 
der Wissenschaften zu Leipzig, Mathematisch-physische Klasse, vol. 78 (1926), 
pp. 243-250. 
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higher than all finite ordinals, every abstract containing only variables 
and abstracts of finite orders defines a set of order eo. On the other hand, 
since co is the smallest infinite order, an abstract containing any variable 
or abstract which is not of a finite order must be of order higher than co. 
Similarly, for each limiting ordinal a. As a result, for each limiting ordinal a, 
sets of order a serve to sum up all sets of all lower orders in the theory S. 

There is no reason that we should stop at any particular ordinal number a 
of the second number class, since we can certainly proceed further and 
define abstracts of order a + \, a + 2, etc. Hence, instead of using a 
definite formal system, we allow in 2 indefinitely many orders a and 
corresponding partial systems Sa. 

In Principia mathematical it is emphasized that certain expressions 
are neither true nor false but meaningless. Thus, for example, it is neither 
true nor false to say that a set belongs to itself, because the question is 
meaningless. In general, 'a e V is meaningless unless a and b are of suitable 
types (more specifically, b is just one type higher than a). 

Recently, this emphasis has often got into headlines in philosophy. 
It is contended that many, if not all, philosophical problems arise because 
we want to get a 'yes or no' answer to meaningless questions. When we say 
that the universal set belongs to itself, or that justice is blue, we are said 
to be making a 'category mistake.' 

However suggestive, for philosophy, the idea may be, it does not seem 
necessary so far as logic is concerned. An obvious way is to call the expres
sions false instead of meaningless. Indeed, this is followed in the theory S. 

The procedure in Principia of treating expressions such as "an e an" 
(n as type or level index) as meaningless rather than false leads to the con
sequence that the sets are divided into mutually exclusive ranges of signifi
cance. This is so because it would be extraordinarily queer and inconvenient 
to say, for example, that "an e an" is meaningless while "bn e an" is meaning
ful (and true), or, in general, that some term can replace another term in one 
meaningful expression but not in another. The situation is most striking 
with regard to the substitution of equals for equals (substitutivity of 
identity). On the other hand, it is quite all right to say, for example, that 
"an e an" is false but "bn e an" is true. 

Hence, the fact that the ordinary theory of simple types does not permit 
mixture of types is closely connected with the decision of considering 
certain expressions as meaningless instead of false. If, for example, we 
introduce types or levels to the system in S which deals solely with sets 
and variables of finite orders and then add the axiom of reducibility to 
nullify the distinction of orders, then we get a theory which is like the 
simple theory of types but permits the mixing of different types. 

A. N. WHITEHEAD and BERTRAND RUSSELL, Vol. I, p. 41. 
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It goes without saying that the use of transfinite orders (and without 
bounds) is the principal difference between the theory S and the ordinary 
ramified theory of types without the axiom of reducibility. The axioms of 
limitation provide a new feature which has often been discussed but has 
never been carried out before in standard forms of set theory. 

It may be thought that the famous Godel proposition, which essentially 
says of itself that it is not provable in a certain system, violates the vicious-
circle principle. If so, it would be pretty bad for the vicious-circle principle, 
since Godel's construction is a perfectly sound procedure. Actually, however, 
the self-reference is achieved by using considerations from outside the 
system. Godel is defining by a non-objectionable method something which 
ordinarily can only be defined by a vicious circle. This is like proving some 
set defined by an impredicative definition actually equivalent to a set 
defined by a predicative definition, thereby making the set non-objection
able. 

More exactly, if we say, "This proposition is not provable," we are 
using self-reference, and defining a proposition by referring to itself (or 
a totality including itself), but when we find a way of doing the matter as 
Godel does, it is justified. We no longer define a proposition but just interpret 
a proposition, and prove results by means of this interpretation. 

11. Predicative sets and constructive ordinals. In this essay 
constructive sets are identified with predicative sets. Predicative sets are 
sets which can be defined without violating the vicious-circle principle. 
It is desirable to have a more exact characterization which is, for instance, as 
sharp and acceptable an explication for predicativeness as recursiveness 
is for the intuitive concept of effective computability. 

If we confine our attention to mathematical objects, one possibility is 
to say that a set is predicative if and only if it is coextensional with a set 
of the theory S. Leaving aside the difficult question of justifying the ade
quacy of the identification, we are faced also with the more urgent question 
of rendering the answer clear. 

To determine even roughly the domain of sets available in 2, we should 
have a pretty good idea of what a constructive ordinal is, since S is the 
union of all systems Sa where a is a constructive ordinal. 

The Church-Kleene definition11 of constructive ordinals in terms of 
recursive functions is clear and definite enough for the purpose. Yet it is 
rather narrower than what is wanted, since, in defining new ordinals, we 
would like to say that each monotone increasing sequence, generated by a 

11 See S. C. KLEENE, On notation for ordinal numbers, this JOURNAL, vol. 3 (1938), 
pp. 150-155, and ALONZO CHURCH, The constructive second number class, Bulletin 
of the American Mathematical Society, vol. 44 (1938), pp. 224-232. 
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predicative function, of constructive ordinals determines a limit which is 
again a constructive ordinal, and yet there are predicative functions which 
are not recursive. As a result, we seem to get into a circle: in order to 
determine the region of predicative sets, we must have first a definite 
notion of constructive ordinals; in order to get such a definite notion, we 
must determine first the region of predicative sets. 

One possible way to eliminate this impasse is to begin with a definite 
totality of ordinals (e.g., all ordinals below the first c-number, or all con
structive ordinals in the sense of Church-Kleene) and then consider the 
totality of all ordinals /? definable in some of the systems Sa, where a is 
an ordinal in the first totality, ^n general, the new totality contains the 
first totality as a proper part. We can then consider the totality of all 
ordinals y definable in some system 2^, where /3 is an ordinal of the second 
totality. And so on. There is, of course, no obvious assurance that all 
constructive ordinals we want will be obtained in this fashion. Certainly 
a large variety of ordinals can be gotten. 

The usefulness of this definition of constructive ordinals depends on 
the following facts: given an ordinal number a, we have, as described above, 
a definite procedure of constructing S0; given a system 2^, the totality of the 
ordinal numbers obtainable in S^ is determined. No circularity is involved. 

The limitations upon formal systems were discussed in § 5. Let us now 
make a few general observations on how the approach embodied in the 
theory £ is both natural and not subject to objections raised there. 

One reason why the approach is natural is the inclusion of all principles 
employed in standard systems. The consistency is assured by rejecting 
altogether impredicative sets. The possibility of immediate extension is 
excluded by deliberately avoiding the postulation of a highest level of sets. 
There is, so to speak, at every stage an indeterminate limit on our actual 
knowledge of the possibilities of constructing new sets from given sets. Every 
given determination of the limit can be transcended, but no determinate 
limit transcends or even exhausts all the possibilities which are permitted 
by the theory. In this way the second objection is evaded. 

To meet the third objection, indenumerable sets are entirely excluded. 
Given any enumeration of sets of (say) positive integers in the theory, there 
is always some other set of positive integers, not included in the enumeration. 
Moreover, given an arbitrary order, there are sets which cannot be enumerat
ed by sets of that order. Nevertheless, every set in the theory is denumerable 
by some set (relation) in the theory. There are not only no absolutely in
denumerable sets, but even no sets of the theory which are not denumerable 
in the theory. There are only indenumerable sets relative to each order in 
the theory. 

This meets the third objection only by adopting a certain preferred 
viewpoint (you might say, a philosophy) which interprets sets as in some 
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sense constructed. From this point of view, the fact that no enumeration 
can exhaust all sets of positive integers is explained not by the existence 
of indenumerable sets but rather by the impossibility for our intellect to 
have a clear and distinct idea of the totality of all sets or laws defining 
enumerations, for unless we are able to contemplate such a totality, it is 
quite senseless to ask whether there exists any set which is indenumerable 
in the absolute sense. If each time we can only contemplate a portion of all 
sets or laws of enumeration, we can only prove that certain sets are inde
numerable when we restrict our means of enumeration to the given kind. 

Or, the same fact can be explained by our inability to contemplate 
at one and the same time the totality of all sets (or laws defining sets) of 
positive integers. For, it may be argued, although we cannot contemplate 
all laws of enumeration at the same time, we can contemplate each of them. 
Therefore, if we can grasp at once the totality of all sets of positive integers, 
we can see schematically that each law of enumeration is inadequate to an 
enumeration of all of these, and then conclude that the totality of all sets 
of positive integers is absolutely indenumerable. But if, as is natural to 
assert from a constructivistic view, we cannot have a clear and distinct 
idea of the totality of all sets of positive integers, then it is quite senseless 
to ask whether or not such a totality, if we could grasp it, could be ex
hausted by a specific law of enumeration. 

From this approach, to ask whether the totality of all sets of positive 
integers is denumerable (in the absolute sense) is very much like asking, 
as a common man though perhaps not as a physicist, whether or not the 
world is bounded in time and space. The totality of all sets or of all sets 
of positive integers is like Kant's thing-in-itself, while the constructible 
sets correspond to all possible experience. To parrot Kant: Now if I inquire 
after the quantity of the totality, as to its number, it is equally impossible, 
as regards all my notions, to declare it indenumerable or to declare it 
denumerable. For neither assertion can be contained in mental construction, 
because construction of an indenumerable totality or a closed denumerable 
totality incapable of further expansion, is impossible; these are mere ideas. 
The number of the totality, which is determined in either way, should 
therefore be predicated of the transcendent totality itself apart from all 
constructive thinking.12 We cannot indeed, beyond all possible construction, 
form a definite notion of what the transcendent totality of all sets may be. 
Yet we are not at liberty to abstain entirely from inquiring into it; for 
construction never satisfies reason fully, but in answering questions, refers 
us further and further back, and leaves us dissatisfied with regard to their 
complete solution.... The enlarging of our views in mathematics, and the 
possibility of new discoveries, are infinite. But limits cannot be mistaken 

12 Compare Prolegomena to any future metaphysics, § 52, c. 
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here, for mathematics refers to the constructible only, and what cannot be 
an object of intuitive contemplation, such as the totality of all laws, lies 
entirely without its sphere, and it can never lead to them; neither does it 
require them.13 

The question whether 2 can further be extended is debatable. Since 
we make conventions in 2 which depend on previous ones, we cannot ef
fectively predict or well-order all possible orders used in 2 once and for all. 
On the other hand, it seems possible to look from outside and speak of the 
totality of all sets in 2 or all orders used in 2. To speak of a universal 
set which contains all sets in 2 as members is either making an impossible 
convention or making a convention of a higher kind. It may be exaggeration 
to call such a convention impossible. It is just not very informative. Thus, 
it appears possible to add consistently to 2 an isolated universal set, provided 
we do not try to say too much about this transcendental set. It we wish to, 
we may even say that 2 is all that is needed for mathematics, introduction 
of sets beyond belongs to the realm of philosophy. 

12. Concluding remarks. We may say that there are three regions 
in mathematics: (1) the effectively decidable; (2) the constructive; and 
(3) the transcendental. The theory 2 is an attempt to formalize the second 
region. Cantor's jump to the absolutely indenumerable belongs to the third 
region, while Brouwer's logic, as well as Hilbert's finitist viewpoint, deals 
mainly with the first region. Hilbert and Brouwer differ in that Brouwer 
never accepts willingly anything but the decidable logic, while Hilbert 
would allow us to use everything which can be justified on the basis of the 
decidable logic. This might also be expressed by saying that Brouwer re
quires restriction to his logic in all mathematics, while Hilbert requires it 
only in the domain of metamathematics. 

For Hilbert, anything which can be seen or proved consistent finitistically, 
is acceptable: to be is to be consistent. It appears from discussions on the 
finitist viewpoint that the theory 2 can be proved consistent by finitist 
arguments. The theory 2 may perhaps be viewed as a theory satisfying 
Hilbert's demands for the foundations of mathematics. Of course there are 
finitist arguments which are not formalizable in current systems of ele
mentary number theory.14 

The main purpose of a construction and development of the theory 
will be not so much the exhibition of a formal system as the basis of all 
mathematics, as the presentation of an argument to justify all mathematical 
reasoning which does not get into the transcendental. It will be an attempt 

" I b i d , §57. 
14 See, e.g., D. HILBERT and P. BERNAYS, Grundlagen der Mathematik, vol. II , 

p . 373. 
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to show that all such reasoning can be formalized in some formal system 
falling under the schema 2. 

Once it is clear that all constructive mathematical reasoning, that is, 
all mathematical reasoning that does not involve the dubious use of the 
impredicative definitions or jump to the indenumerable, can be formalized 
in the loose framework 2, there will be no more need to formalize each 
argument by making explicit the orders of the various sets concerned. 
Rather we can then proceed with no special attention to the orders, with 
the realization that whenever we wish, we can always formalize each 
argument in some system 2a. In this way, the common practice in ordinary 
mathematics can be justified by the theory 2. It is the kind of justification 
which does not interfere with the common practice. In this sense it is 
again more natural than other approaches to the foundations of mathe
matics. 

But how can we prove that this is the case? There are two methods: 
a long one and a short one. The long method consists in a completion of the 
arguments by developing in 2 the various branches of mathematics. For 
example, as the Bourbaki group continues to turn out more and more 
volumes of their treatise, we show for each volume how all the definitions 
and proofs can be formalized in the theory 2. While there does not seem to 
be fundamental obstacles to such a program, actually to carry it out is a 
complex and time-consuming matter. Whether this is worthwhile is hard 
to decide because on the one hand, many mathematicians would undoubtedly 
find the result of carrying out such a program quite uninteresting, while on 
the other hand, without an actual carrying out of the program most logicians 
would suspect the soundness of the high claim. 

The short method is to let the matter staftd as it does in an expanded 
version of this essay (or, more exactly, an expanded version which in
cludes detailed formal development of matter covered in §§ 6-8) and 
challenge anybody who questions the adequacy of 2 to produce some 
mode of inference which is used in ordinary mathematics but cannot be 
formalized in 2. The trouble with this shortcut is that few mathematicians 
who have a more or less clear view of the whole field of mathematics are 
likely to care to stuety the theory 2 carefully. 

There are many open problems concerning the relation between the 
decidable and the constructive, as well as the relation between the con
structive and the transcendental. The theory 2 is intended to be a definitive 
theory of the region of the constructive so far as mathematics is concerned. 
It is not clear to the writer whether there is a generally accepted unique 
characterization of the region of the decidable. So far as the region of 
the transcendental is concerned, we note merely that it is of course also 
possible to construct a theory which is related to (say) Zermelo's full set 
theory in the same manner as the theory 2 is to the system 20. Indeed, 
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for the transcendentalists it may even be possible to use as order indices 
ordinal numbers beyond Cantor's second number class. 

The most famous open problem in the field of transcendental set theory 
is Cantor's continuum problem or the problem whether Cantor's hypothesis 
is independent of the other axioms of set theory. A related problem is 
the independence of the axiom of choice. From the known fact that the 
axiom of choice is derivable from the generalized continuum hypothesis, 
it also follows that the independence of the axiom of choice entails the in
dependence of the generalized continuum hypothesis. A less famous but 
more basic open problem is the consistency of the use of impredicative 
sets. 

One objection to £ is that it does not contain a maximum order so 
that, for example, we cannot speak of all sets, or all real numbers at the 
same time in 2 . This is at least partly a linguistic difficulty and can be 
avoided to that extent by some linguistic device. Thus, in £ we can introduce 
an additional kind of general variable x, y, z, etc. so that we can assert 
'(x)F(x)' when and only when for each a, we can assert ' (xa)F(xa)'; we can 
assert '(x)(3y)F(x, y)' when and only when for each a, there is a /S; we can 
assert '(xa)(3y^)F(xa, yp)', etc. This device has also the additional advantage 
that for many purposes we can make general assertions without making 
the relevant order indices explicit. This draws the theory closer to the 
common practice in mathematics. 

Since the notion of set determined by the theory £ is more transparent 
than the transcendental notion of set, it seems reasonable to expect that 
the theory 2 may enable us to get better insight into certain mathematical 
problems which are difficult mainly because they are very abstract and 
general. For example, we may be in a better position to deal with problems 
which are concerned with arbitrary sets or arbitrary functions. 

Godel defends transcendental set theory by contending that it can be 
justified by conceiving sets and concepts as real objects and that it is 
legitimate so to conceive them. " I t seems to me that the assumption of 
such objects is quite as legitimate as the assumption of physical objects and 
there is quite as much reason to believe in their existence. They are in the 
same sense necessary to obtain a satisfactory system of mathematics as 
physical bodies are necessary for a satisfactory theory of our sense percep
tions and in both cases it is impossible to interpret the propositions one 
wants to assert about these entities as propositions about the 'data, ' i.e., 
in the latter case the actually occurring sense perceptions."15 

One possible interpretation of the argument is to say that it amounts 

16 KURT GODEL, Russell's mathematical logic, The philosophy of Bertrand Russ
ell, The Library of Living Philosophers, Vol. V (1944), edited by P. A. Schilpp, 
p. 137. 
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to conceding that transcendental set theory and the assumption that sets 
are real objects are necessary evils which we have to put up with if we want 
to have a fairly simple theory of mathematics. The theory £ seems to show 
that the evil of accepting transcendental set theory is not necessary. In 
the first place, so far as the data to be accounted for are concerned, neither 
Godel nor others consider it necessary to preserve Cantor's higher infinities, 
but nearly everybody wishes to retain classical analysis. The evil of using 
impredicative sets is considered necessary because it is thought that classical 
analysis cannot be developed without these sets. The theory S establishes 
that this is not the case. 

As far as simplicity is concerned, there are of course many different 
senses of the word 'simplicity.' In one important sense, the demonstrable 
consistency of the theory £ proves conclusively that it is simpler, at least 
relative to our present knowledge, than standard systems of transcendental 
set theory. Usually the ramified theory of types is considered to be hopelessly 
messy because we have to distinguish at least two hierarchies in it (the 
orders and the types or levels). It is, however, known that one hierarchy is 
enough, and the theory 2 actually uses just one hierarchy. Moreover, in 
formalizing actual proofs we do not have to let even the distinction of orders 
intrude, as long as we are careful not to use circular arguments in which 
impredicative definitions cannot be dispensed with. Once we have seen 
how much can be done in the theory S, we can continue to do mathematics 
as usual with the realization that the arguments used can be formalized in 2 
if and when we wish to. Only occasionally we encounter 'strange' modes of 
reasoning which have to be examined more carefully before we can decide 
whether they are formalizable in S or belong to the domain of transcendental 
set theory. For example, most people, when confronted with Cantor's in-
denumerability arguments, presumably have some uneasy feeling and 
suspect the presence of some hidden fallacy. Undoubtedly ordinary mathe
maticians would consider such arguments as extraordinarily uncommon. 

OXFORD UNIVERSITY 

https://doi.org/10.2307/2267732 Published online by Cambridge University Press

https://doi.org/10.2307/2267732



