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ABSTRACT 
In ordinary lambda calculus the occurrences of a bound variable are made 

recognizable by the use of one and the same (otherwise irrelevant) name at all 
occurrences. This convention is known to cause considerable trouble in cases of 
substitution. In the present paper a different notational system is developed, where 
occurrences of variables are indicated by integers giving the “distance” to the 
binding il instead of a name attached to that 1. The system is claimed to be efficient 
for automatic formula manipulation as well aa for metdingual discussion. As an 
example the most essential part of a proof of the Church-Rosser theorem is presented 
in this namefree calculus. 

1. INTRODUCTION 

For what lambda calculus is about, we refer to [l], [3] or [a], although 
no specific knowledge will be required for the reading of the present paper. 

Manipulations in the lambda calculus are often troublesome because of 
the need for re-naming bound variables. For example, if a free variable in 
an expesssion has to be replaced by a second expression, the danger arises 
that some free variable of the second expression bears the same name as 
a bound variable in the first one, with the effect that binding is introduced 
where it is not intended. Another case of re-naming arises if we want to 
establish the equivalence of two expressions in those situations where the 
only difference lies in the names of the bound variables (i.e. when the 
equivalence is so-called or-equivalence). 

In particular in machine-manipulated lambda calculus this re-naming 
activity involves a great deal of Iabour, both in machine time as in 
programming effort. It seems to be worth-while to try to get rid of the 
re-naming, or, rather, to get rid of names altogether. 

Consider the following three criteria for a good notation: 

(i) easy to write and easy to read for the human reader; 
(ii) easy to handle in metalingual discussion ; 

(iii) easy for the computer and for the computer programmer. 

The system we shall develop here is claimed to be good for (ii) and 
25 Inclagationes 
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good for (iii). It is not claimed to be very good for (i) ; this means that 
for computer work we shall want automatic translation from one of the 
usual systems to our present system at the input stage, and backwards 
at the output stage. 

An example showing that our method is adequate for (ii) can be found 
in sections 10-12, which present the kernel of a proof for the Church- 
Rosser theorem. This proof is essentially the one that was given in [l], 
where it was attributed to P. Martin-LBf (1971). Later private information 
by Mr. H. P. Barendregt disclosed that the idea is due to W. W. Tait. 
For a survey of proofs of the Church-Rosser theorem see [l] p. 1617. 
An elaborate treatment of the theorem can also be found in [4]. 

What is said about lambda calculus in this paper can be applied directly 
to other kinds of dummy-binding in mathematics. For example, if we 
have an expression like the product Il~,,f(k, m), we can write it as 
17(~1, P, hf(k m)). F or any new quantifier we wish to use (like 17 here) 
we have to take a particular symbol that is treated as an element of the 
alphabet of constants (see section 3). 

Application to AUTOMATH is explained in section 13. 

2. NOTATION IN METALINGTJAL DISCUSSION 

If we want to denote a string of symbols by a single (“metalingual”) 
symbol, we have to be very careful, in particular if this procedure is 
repeated, e.g. if we form mixed strings of lingual and metalingual symbols, 
represent these by a new symbol, etc. 

We shall use parentheses ( ) for this purpose. If @ denotes a string, 
then CD is not the string itself. For the string itself we shall use (CD). We 
shall say that @ denotes the string and that (d)) is the string. Let us 
consider some examples, where the basic lingual symbols are all Latin 
letters as well as the hyphen. (These examples will show the use of ( ) 
in nested form, and therefore show that the simple device of using Greek 
letters on the metalingual level is definitely insufficient.) We shall use the 
symbol Q for reversing the order of a string. That is, &zqra) denotes ar@, 
whence (&nqra)) = arqp. Now let @ denote the word phi, and let .Z denote 
the word sigma. Then (Q)(Z) is the word phisigma, (Q)-(Z) =phi-sigma, 
(e((Z))) = amgis, and 

(e(G4(@‘>)> G?aFaDD = 
= (&pamgis)) = sigmaphi = (Z)(@). 

The ( )‘s of this section are not to be confused with the similar symbols 
we use in Backus’ normal form of a syntax (e.g. in section 5). 

In typescript and in handwriting it is convenient to underline a formula 
instead of putting it in ( )‘a. In print, however, underlining, and in 
particular multi-level underlining, is awkward. 
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3. NAME-CARRYIN~ ExPREssIoNs 

We explain the kind of lambda calculus expressions which we want to 
turn into namefree expressions. We have a set of “constants” (a, b, c, f, g, . . . ) 
and a set of “variables” (5, t, u, v, w, x, . . .). And there is the symbol iz 
that can have any variable as a suffix. Moreover we admit application, 
of which the following is the interpretation. If CD denotes a function, and 
r a value of the variable, then (C&)((P)) is the value of the function 
at (r). We shall use a different notation instead : we add a symbol A 
to the list of constants, and we write A((@), (r)) instead of (@)((Q. 
This puts it on a par with another kind of expression we are going to 
admit, viz. things like f(, ,), where f is ‘any constant. In the interpretations 
the latter kind of expression can be very close to what we have just called 
application, but that does not bother us at the moment. 

We shall not go into a formal definition of the syntax; the following 
example (that accidentally does not contain the symbol A at all) will be 
clear enough. We take the expression 

(3-l) Mw? t, f(W% 4 x), W), w, y). 

4. GETTING RID OF THE NAMES OF VARUBLES 

In order to facilitate the discussion, we represent the expression as a 
planar tree which is easier to read than (3.1) itself. 

If in (3.1) we change the names of the bound variables, e.g. x, t, u, s 
into p, u, S, X, we get an expression that is what is usually called LY- 
equivalent to (3.1) : 

WM@, u, f&a@, u, 4, &w)), w, Y). 

We shall take the simplistic point of view that or-equivalent expressions 
are the same. Formula (3.1) contains bound variables X, t, u, s and free 
variables z, w, y. We shall keep a list of letters from which the free 
variables are to be taken. Let that list be, in this order, x, v, w, y; we 
draw the points AZ, &,, A,,,, & under the‘ tree. 

The variables in the tree (fig. 1) are encircled (unless they occur as a 
suffix of A). 

For every encircled letter we evaluate two integers which are indicated 
in the figure, viz. the reference depth and the level. The reference depth 
of an encircled variable at a certain spot, x say, is the number of A’s we 
encounter when running down until we meet 1, (this 1, is counted as one 
of the encountered A’s). It is agreed that the A,, Azo, IV, AZ (which do not 
belong to the tree itself) can also be encountered on our way down, e.g. 
if we run down to & we encounter &,, &, ilV, AZ. 

The level of an encircled variable at a certain spot counts the total 
number of it’s we encounter when running down the tree until we get to 
the root (if the root is a 4, like 1, here, this one is also included in the 
count; the loose 1,) Are, &,, A, are not counted this time. 
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Let us now erase the variables and the integers indicating the levels ; 
we keep the reference depth. No information is lost: the erased letters 
and numbers can be easily reconstructed. If we are not interested in the 
names of the bound variables (and honestly we should not be) we can 
erase the suffix in AZ, 16, A,, 1,. In those cases where we are interested 
in the names of the free variables we have to keep the ordered list z, o, w, y 
in order to be able to reconstruct our expression. Note that a point of 
the tree refers to a free variable if and only if the reference depth exceeds 
the level. 

2,3 

Fig. 1. 

Thus the information contained in our name-carrying expression can 
be presented as 

(4-l) WW, 1, f(W, 3, 7), W), 3, 2) 

with the free variable list z, v, w, y. This expression is called namefree. 
Note that (3.1) can be represented differently if we take a different 

free variable list. Any sequence of distinct variables may serve as a free 
variable list provided it contains x, w, y in any order. Conversely, every 
namefree expression can be decoded into a name-carrying one if we provide 
a free variable list that is long enough. This determines the name-carrying 
expression up to name-changing of the bound variables. 



Instead of providing a finite free variable list we can take an infinite 
one (with the effect that we need not bother whether the list is long 
enough). The reference depths refer to a count in the reference list from 
right to left, corresponding to the fact that 2’s are written in front of the 
formula they act on. Therefore, such in&rite free variable lists have to 
be written as . . . . x3,22, x1 instead of the usual left-to-right notation of 
an infinite sequence. 

5. THE SYNTAX FOR NAMEFREE EXPRESSIONS 

We present the syntax in Backus’ normal form: 

(constant) ::=alblcldl... 

(NF expression string) : : = (NF expression) I( NF expression string), 
(NF expression) 

(NF expression) : : = (constant) I(constant)((NF expression string)) 
I(positive integer)IIZ(NF expression) 

In the next sections we shall use, in an informal way, the notions 
“level” of an integer in an NF expression, in the sense of section 4. (The 
“reference depth” of an integer is, of course, the integer itself). 

6. SUBSTITUTION 

We shall define the effect of a substitution of a sequence of NF express- 
ions into a single NF expression denoted by 4. 

What we intend to describe is the following. Let . .., 2’3, &, 22’1 denote 
the sequence (in right-to-left notation). (In practice only finitely many 
&‘a are relevant; whence we need not always give the full infinite se- 
quence). We attach a free variable list . . ., x3, x2,21 to 52, and one and the 
same free variable list . . . , ys, ya, yi to every &. That determines name- 
carrying expressions to be denoted by 9* and &*. Now replace any free 
xa in (Q*) by the corresponding (&*). Thus we get an expression, to be 
denoted by r*, with possible free variables . . ., ys, ya, yl. With respect to 
this free variable list . . . , ya, ya, yi this r* corresponds to the NF expression 
S(...,(~3),(zi),(zi); (52)) we shall define presently. The definition will 
be recursive with respect to the structure of (a) ; Q may denote either 
an NF expression string or an NF expression. We follow the syntactic 
classification of section 5. 

(i) If (9)=(Qn,), (Qa) then 

w..., <23)> (E2>, (&>; (Q)D=(fih <F2) 

where rr denotes 

et..., <Z3), (Z2>'z), ei>; <-a>)>. 

(ii) If (Q) is a constant then 

PC..., <z;>, <Z2), <z;>; <Q)))=(Q). 
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(iii) If (Q)=(y)((Ql)) ( w ere y denotes a constant and Qi an NF h 
expression string) then 

(S(...,(Z3),(Z2), (Z1); (Q)))=(y)((S(..., (Z3),(Z22), (z;); (Ql)))). 

(iv) If (Q) is the positive integer k then 

w..., (23), (z;>, (-G>; (Qn>D=(-w. 

(v) If (Sz) = A(F) then 

(6.1) <A(..., <Z3), (.Z2), (&:1); @>)>=W(..., <A,>> <n2>, <Al>, 1; <r))) 

where At denotes 

(6.2) Gq..., 4, 3, 2; <.w)>. 

Note that (At) is obtained from (&) by adding 1 to every integer 
in (&) that refers to a free variable. 

7. THE OPERATORS zh, AND GLOBAL DESCRIPTION OF SUBSTITUTION 

It will be convenient to use the separate notation tn((Z)) in order to 
abbreviate 

As(...,h+3,h+2, h+1;(Z)). 

It means adding h (which is a positive integer) to every integer (2) 
that refers to a free variable. The special case ri(( &)) occurs in (6.2). 
With the aid of this notation we can give a more global description of 
how (4. m-2 <23), (22X (W ; G&D is obtained: start from 9, and in each 
case where an integer t in (Q) exceeds its level I, we replace that t by 

<Q((Zlt-2))). 
In automatic formula manipulation it may be a good strategy to refrain 

from evaluating such rl((Z))‘s, but just to store them as pairs I, (L’), 
and go into (full or partial) evaluation only if necessary. The following 
formulas may come in handy: 

@(...,(zS),(zi), (z;); (zk(@))))=@(..., (2X+3), (zjc+2), (zk+l); @>)>. 

The latter formula is a special case of the following result on composite 
substitution : 
If 

then 

where 
S( . . . . (Z2), <&>; <@)=fl( . . . . (Pz), <T1); (4) 

(W=W..., <z22), <w; (A>)> (i= 1, 2, . ..). 

8. BETA REDUCTION 

If we have an applicational expression A((@), (F)) (cf. section 3), then 
the interpretation is that (@) is a function, (r} a value of the variable 
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in that function, and A((@), (r)) is intended to represent the value of 
the function (@} at the point (P). If (CD) happens to have the form 
A(Q), then the function value can actually be evaluated. Roughly speaking, 
it comes down to substituting (r) in (Q) for all occurrences of the bound 
variable corresponding to the A in front of (L?). 

A precise definition in terms of NF expressions is easy to give: If 52 
and r denote NF expressions, then A(J(Q), (r)) is an NF expression 
to which beta reduction can be applied. The effect of the beta reduction 
is the NF expression 

(8.1) @(..., 3, 9, 1, (0; Wn))). 

The usual beta reduction for name-carrying expressions is obtained if we 
use one and the same free variable list for all four expressions 1(Q), 

(0, 4@), (0) and (8.1). 

9. ETA REDUCTION 

In terms of name-carrying expressions, q-reduction means the following. 
If Z denotes a name-carrying expression that does not contain the variable 
x, then &(Z)(x) (or in our notation &4((C), x)) has the same mathe- 
matical interpretation as (2) itself. The transfer from izz(Z)(z) to (22) 
is called q-reduction. We shall define it for NF expressions: 

For any NF expression (A) we define as r-reduction the transition of 

P-1) W(~dWD, 1) intO (0 

If we transform both expressions of (9.1) into name-carrying expressions 
by means of one and the same free variable list, the transition (9.1) be- 
comes the q-reduction for name-carrying expressions. 

10. MULTIPLE BETA REDUCTION 

In section 8 we considered beta reduction of an NF expression. It was 
reduction of the full expression and not the beta reduction of a sub- 
expression (local beta reduction) which we shall consider presently. In 
order to be able to indicate where the p-reduction has to be carried out, 
we introduce a set of constants (applicational symbols) to be used instead 
of the single symbol A. By this same device we get the possibility of 
multiple local beta reduction : we indicate a subset of the set of applicational 
symbols and we carry out beta reduction for all symbols of that subset. 

Let U be a subset of the set of constants. An NF expression (Z} is 
called U-correct if every element of U that occurs in (2) is always followed 
by a string in parentheses with the form (n(Q), (r)). In other words, 
each occurrence of each element of U is ready for local beta reduction. 
To be more precise, we indicate how the syntax of section 5 is to be changed 
in order to get the syntax of the U-correct NF expressions. We have to 
replace the entries 
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(constant)/(constant)((NF expression string)) 

bY 
(constant not in U)l(constant not in U)((NF expression string))1 
(constant in U)(A(NF expression), (NF expression)) 

and, moreover, we have to write “U-correct NF” instead of “NF” through- 
out. 

The following theorem is intuitively clear, and easily proved formally 
with the aid of the recursive definition of substitution (section 6). 

THEOREM 10.1. If Q, 21, &, . . . denote U-correct expressions, then 

(a(..., (&), (&:I); (Q))) is U-correct. 

We shall now define the operator fiv on the set of U-correct NF express- 
ions recursively : 

(i) If (2) is a single constant or a positive integer, then 

(Bu(<QD = (2). 

(ii) If (2) = (y)((L’i), . . . . (&)), where (y) is a constant not in U, then 

(Bu((zl>)>=(Y>((Bu((~l:l>)>, -m-9 @u(<WD). 

(iii) If (22) =A(&) then 

<Bu((Q)> =Wu(<Wb 

(iv) If (Z)=(y)(A(Q), (r)) and (y) E U then (cf. (8.1)) 

(Bu((Q)>=@(..., 33% 19 @u(<OD; <Bu(GvDD. 

Needless to say, the effect of #?u on an expression string (&), . . ., (&) 
is to be defined by (~u((&>)>, . . . . (Bu((W)). 

11. THEOREMS ON MULTIPLE BETA REDUCTION 

THEOREM 11.1. If (Q), (Zi), (A’$, . . . are U-correct, then 

(Bu(eY..., (Z2:2), @l>; WD= 

=<fJ(..., <BU((zi)D> <Bu(<~1>D; @u(@>DD. 

PROOF: For easier reading we shall drop the signs ) and ( throughout 
this proof. 

The proof has to be read twice. The fist time we deal with the proof of 

(11.1) pvq..., &, ~;Ln)=s(...,gu~2,~u~;Bu~) 

in the case that the & are integers. (This case is intuitively clear, but 
it takes little extra trouble to derive it formally.) In the second reading 
the result of the lirst reading can be used. 

We apply induction with respect to the structure of Q, using the definition 
of substitution as given in section 6. (Note that in the lirst reading the 
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induction hypothesis is used only for cases belonging to the first reading.) 
The cases (i), (ii), (iv) of section 6 are very simple, and so is case (iii) 
if the constant y is not in U. We concentrate on the two remaining cases, 
viz. Q=U and .Q=y(flA, r) with y E U. 

If Q=nr we apply (v) of section 6 twice : 

(11.2) /9uS(..., 22, z1; nr)=pds(..., AZ, A, 1; r), 

(11.3) X(...,~u~z,~u~1;~~u~)=IS(..., A2*, Al*, 1; pun 

where & is given by (6.2), and &*=S(..., 4, 3, 2; /?u&). 
By section 10 (iii) and by the induction hypothesis, the right-hand 

side of (11.2) equals 

(11.4) qd3..., 112, -41, 1; r)=As(...,puA2, pu4 1; pun. 

In the first reading of the proof the & and AZ are integers, whence 
@uZ; = ,&, and therefore dt* = lit =BuL&. So the right-hand sides of (11.3) 
and (11.4) are equal, hence the left-hand sides of (11.2) and (11.3) are equal. 
In the second reading of the proof we may use the theorem for the case 
that the & are integers ; hence 

/!?un$=puS( . ..) 4, 3, 2; &)=S( . ..) 4, 3, 2; j3cLz*d)=(la*, 

and the right-hand sides of (11.2) and (11.3) are equal. 
The second case we have to deal with, is il= =@A, r) with y E U. We 

have to show 

(11.5) /?uS(..., &, 21; y(lA, r))=S(..., ,&~~2,/9u&;BuyW, U). 

The right-hand side equals, by section 10 (iv) 

S(..., ,9&'2, Bu&;S(..., 3, 2, 1, @UC BuA)). 

By the formulas on composite substitution (section 7) this is 

(11.6) SC..., Buz;, Bu&,S(..., BuZ2, Buz;; Bur); @VA). 

The left-hand side of (11.5) equals, according to 6 (iii), 

(11.7) Buy(S(..., Z2, zi; AA),S(..., 22, &; r)). 

By 6 (v) we have 
S(..., a& &; nA)=J@ 

where 
@=S(..., AZ, A,, 1; A), A< =S(. . . , 3, 2 ; a&). 

Applying 10 (iv) we can write for (11.7) 

(11.8) S(..., 2, 1, BuS(..., 22, a; q; Bu@). 

By the induction hypothesis we have 

Bu@=4...,Bdz, @VA, 1; Bud), 
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and so we can apply the formula for composite substitution (section 7) 
to (11.8); it becomes 

(11.9) q..., 172, fl1; Bud) 

where 

l71=S( . ..) 2, 1,ppq . . . . &, 21; I-); 1)=/9vS( . ..) &?, &; r) 

I;Tr+z=S( . ..) 2, 1, /!??psy . . . . &, 21; q; pgA$) (i=l, 2, . ..). 

We have to show that (11.9) equals (11.6). By the induction hypothesis we 
have nl=S(...,8~~2,Buzi;Bur), so it remains to show that l&+1 =/l U& 
(i= 1, 2, . ..). 

In the first reading of the proof the & are positive integers. Therefore 
the Ilt are integers > 1; it follows that @ ullr = At > 1, whence lL7g+z = rlt - 1 = 
=&=/3u&. 

In the second reading of the proof we may use the result of the Crst 
reading : 

puAr=puS( . . . . 3, 2; &)=S( . ..) 3, 2; pum, 

and the formula for J7i+i now results in (cf. section 7) 

~~+l=s(..., 3,2, 1; pu&)=pu&. 

THEOREM 11.2. Let U and ?’ be subsets of the set of constants, and 
let (2) be both U-correct and V-correct. Then (@u((Z))) is V-correct, 

@v((Q)> is U-comet and (~u((Bv(<~>)>)> = @v((Bu((~c>)>)>. 

PROOF : Again we omit the (‘s and )‘s. The P-correctness of BuZ is 
easily proved by recursion: use the definition of /?u of section 10. In 
10 (iv) we have to use Theorem 10.1. 

By the same recursion we shall prove /?u@vZ=~v/?uZ. The only case 
where the induction step is non-trivial is the case Z= y(lzsz, P) with 
y E U u 7. If y E U we have by 10 (iv) 

pvpuz==pvfq . . . . 3, 2, 1, @UC BUQ). 

By Theorem 11.1 this equals 

(11.10) S(..., 3,2, 1, pvpuc BVBUQ). 

If y $ U, y E V we find by 10 (ii), 10 (iii) 

Bvsu~=pvy(MuQ, Bun 

and by 10 (iv) this equals (11.10). So y E U U V implies that /?v@uZ 
equals (11.10). On behalf of the induction hypothesis (11.10) is symmetric, 
whence ~~v,~uC=#?U~VZ. 

12. THE CHURCH-R• SSER THEOREM FOR BETA REDUCTION 

We consider an NF expression L’ with a single constant A that can be 
used for p-reduction. We label all A’s in Z so that they become all different. 
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Next we take a subset U of the labelled .4’s, we apply BU and then remove 
the labels. This gives an NF expression Z’. We say that 2’ is a multiple 
reduction of .Z’, and we write .Z pm Z. If U has only one element, and 
if that element has just one occurrence in Z; the reduction is called single, 
and we write Z >s Z’. 

If & and & satisfy either 21 >s & or Z2 >s .Z’i, we write & N 22. 
The Church-Rosser theorem for beta reduction says : If Zi N Zz N . . . N Zn 
then there are 111, . . . . ilk and III, . . . . 17, with 

zi >SAl> 8 . . . >a (ik, zn >,qnl >a . . . >a nh, (Ik=nh. 

This can now be proved as follows. From theorem 11.2 we easily obtain : 
if ,Zi >,,, Zz, & >m & then there is a & with Zz > m &, Za >m &. 
Moreover it can be shown: If Z > m A then there is a sequence 

.E >a Z; >a & >s . . . >a Zn=A. 

(Actually, if every element of U occurs at most once in the U-correct 
expression Z; then we can arrange the elements of U as ui, . . ., u,,, in 
such a way that 

BWmJ a-* BW,} .c=Bua. 

The Church-Rosser theorem now follows by a trivial reduction argument. 
The above proof can be easily adapted to lambda calculus with express- 

ions as types (see section 13). 

13. NOTATION IN AUTOMATH 

The mathematical language AUTOMATH (see [2]) has lambda calculus 
with types, and these types are again expressions. That is, instead of 1, 
we have things that can be visualized as &,> (Q), where @ and Q 
denote name-carrying expressions. We may think of x to be a variable 
of the type (@). It ie clear that we do not want z to have any binding 
influence on (@). In order to achieve this, we create a new lingual constant 
T (just like we added A to our set of constants in section 3), and we write 

(13.1) T((@), MQ>) 

instead of 1Zc(o) (i-2). Now (13.1) can be transformed into a namefree 
expression just like any other name-carrying expression. 

The actual notation in AUTOMATH is different. Instead of (13.1) 
AUTOMATH uses [x, (@>](Q), and for the application A((@), (P)) 
AUTOMATH uses {(r})(G). 

14. ALGORITHMS 
An algorithm for turning an NF expression into a name-carrying one, 

can be described on the basis of the recursive definition of substitution 
in section 6. Let (Q) be an Nl? expression. Take a free variable list 
. ..) xa, x2, xi consisting of distinct letters which do not belong to our 
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alphabet of constants. Now add these xi to that alphabet, and evaluate 

<St..., x3, x2, x1; (J-q)> 

This is a namefree expression ; if we proclaim the x$‘s to be variables 
again, it becomes an intermediate expression where the free variables 
have names but the bound variables are nameless. If we want to have 
names for the bound variables too, we have to modify S slightly. We take 
an infinite store of letters yi, yz, . . . (different from the ~2’s and different 
from the constants), and we take a modified form of (6.1). Any time we 
get to apply (6.1) we take a fresh y (i.e. one that has not been used before) 
and we replace the right-hand side of (6.1) by 

n&q..., (A), (A2), <A>> Y; (0)). 

It is not very hard either to give algorithms that transform name-carrying 
expressions into namefree ones. This can be done if a free variable list is 
given (and then it has to be checked, during the execution of the algorithm, 
whether this list is adequate), but we can also write an algorithm that 
produces a free variable list itself. For the case of the first-mentioned 
possibility we give a brief description of the crucial steps, Let . . . , x3, x2, x1 
be a free variable list, and let (9) be the name-carrying expression we 
want to transfer into the namefree expression (sZ*). If (Q) equals one 
of the x’s, then (Q*) is an integer, viz. the index of that x. If ($2) is a 
variable, but not one of the x’s, the answer is “free variable list was 
wrong”. If (Q) = A,(r) then we transform (r) into the nameless expression 
(r*) by means of the free variable list . . . . x3, x2, xi, y, and we have 
(Q*)=A(r*). The other cases (the cases (i) (Q)=(Qi), (Qz), (ii) (Q)= 
a constant, (iii) (Q)=(/?)((Qi))) are very easy. 
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