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As a result of his penetrating critique, Weierstrass has provided a solid
foundation for mathematical analysis. By elucidating many notions, in
particular those of minimum, function, and differential quotient, he
removed the defects which were still found in the infinitesimal calculus,
rid it of all confused notions about the infinitesimal, and thereby com-
pletely resolved the difficulties which stem from that concept. If in analy-
sis today there is complete agreement and certitude in employing the
deductive methods which are based on the concepts of irrational number
and limit, and if in even the most complex questions of the theory of dif-
ferential and integral equations, notwithstanding the use of the most
ingenious and varied combinations of the different kinds of limits, there
nevertheless is unanimity with respect to the results obtained, then this
happy state of affairs is due primarily to Weierstrass's scientific work.

And yet in spite of the foundation Weierstrass has provided for the
infinitesimal calculus, disputes about the foundations of analysis still
go on.

These disputes have not terminated because the meaning of the in-
finite, as that concept is used in mathematics, has never been completely
clarified. Weierstrass's analysis did indeed eliminate the infinitely large
and the infinitely small by reducing statements about them to [statements
about] relations between finite magnitudes. Nevertheless the infinite still
appears in the infinite numerical series which defines the real numbers
and in the concept of the real number system which is thought of as a
completed totality existing all at once.

In his foundation for analysis, Weierstrass accepted unreservedly and
used repeatedly those forms of logical deduction in which the concept of
the infinite comes into play, as when one treats of all real numbers with a
certain property or when one argues that there exist real numbers with a
certain property.

Delivered June 4, 1925, before a congress of the Westphalian Mathematical Society in
Munster, in honor of Karl Weierstrass. Translated by Erna Putnam and Gerald J. Massey
from Mathematische Annalen (Berlin) vol. 95 (1926), pp. 161-90. Permission for the trans-
lation and inclusion of the article in this volume was kindly granted by the publishers,
Springer Verlag.
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Hence the infinite can reappear in another guise in Weierstrass's theory
and thus escape the precision imposed by his critique. It is, therefore, the
problem of the infinite in the sense just indicated which we need to
resolve once and for all. Just as in the limit processes of the infinitesimal
calculus, the infinite in the sense of the infinitely large and the infinitely
small proved to be merely a figure of speech, so too we must realize that
the infinite in the sense of an infinite totality, where we still find it used in
deductive methods, is an illusion. Just as operations with the infinitely
small were replaced by operations with the finite which yielded exactly
the same results and led to exactly the same elegant formal relationships,
so in general must deductive methods based on the infinite be replaced by
finite procedures which yield exactly the same results; i.e., which make
possible the same chains of proofs and the same methods of getting
formulas and theorems.

The goal of my theory is to establish once and for all the certitude of
mathematical methods. This is a task which was not accomplished even
during the critical period of the infinitesimal calculus. This theory should
thus complete what Weierstrass hoped to achieve by his foundation for
analysis and toward the accomplishment of which he has taken a neces-
sary and important step.

But a still more general perspective is relevant for clarifying the con-
cept of the infinite. A careful reader will find that the literature of mathe-
matics is glutted with inanities and absurdities which have had their
source in the infinite. For example, we find writers insisting, as though it
were a restrictive condition, that in rigorous mathematics only a finite
number of deductions are admissible in a proof - as if someone had suc-
ceeded in making an infinite number of them.

Also old objections which we supposed long abandoned still reappear in
different forms. For example, the following recently appeared: Although
it may be possible to introduce a concept without risk, i.e., without get-
ting contradictions, and even though one can prove that its introduction
causes no contradictions to arise, still the introduction of the concept is
not thereby justified. Is not this exactly the same objection which was
once brought against complex-imaginary numbers when it was said:
"True, their use doesn't lead to contradictions. Nevertheless their intro-
duction is unwarranted, for imaginary magnitudes do not exist"? If, apart
from proving consistency, the question of the justification of a measure
is to have any meaning, it can consist only in ascertaining whether the
measure is accompanied by commensurate success. Such success is in fact
essential, for in mathematics as elsewhere success is the supreme court to
whose decisions everyone submits.
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As some people see ghosts, another writer seems to see contradictions
even where no statements whatsoever have been made, viz., in the con-
crete world of sensation, the "consistent functioning" of which he takes
as special assumption. I myself have always supposed that only state-
ments, and hypotheses insofar as they lead through deductions to state-
ments, could contradict one another. The view that facts and events
could themselves be in contradiction seems to me to be a prime example
of careless thinking.

The foregoing remarks are intended only to establish the fact that the
definitive clarification of the nature of the infinite, instead of pertaining
just to the sphere of specialized scientific interests, is needed for the
dignity of the human intellect itself.

From time immemorial, the infinite has stirred men's emotions more
than any other question. Hardly any other idea has stimulated the mind
so fruitfully. Yet, no other concept needs clarification more than it does.

Before turning to the task of clarifying the nature of the infinite, we
should first note briefly what meaning is actually given to the infinite.
First let us see what we can learn from physics. One's first naive impres-
sion of natural events and of matter is one of permanency, of continuity.
When we consider a piece of metal or a volume of liquid, we get the
impression that they are unlimitedly divisible, that their smallest parts
exhibit the same properties that the whole does. But wherever the
methods of investigating the physics of matter have been sufficiently
refined, scientists have met divisibility boundaries which do not result
from the shortcomings of their efforts but from the very nature of things.
Consequently we could even interpret the tendency of modern science as
emancipation from the infinitely small. Instead of the old principle
natura nonfacit saltus, we might even assert the opposite, viz., "nature
makes jumps."

It is common knowledge that all matter is composed of tiny building
blocks called "atoms," the combinations and connections of which pro-
duce all the variety of macroscopic objects. Still physics did not stop at
the atomism of matter. At the end of the last century there appeared the
atomism of electricity which seems much more bizarre at first sight. Elec-
tricity, which until then had been thought of as a fluid and was con-
sidered the model of a continuously active agent, was then shown to be
built up of positive and negative electrons.

In addition to matter and electricity, there is one other entity in physics
for which the law of conservation holds, viz., energy. But it has been
established that even energy does not unconditionally admit of infinite
divisibility. Planck has discovered quanta of energy.
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Hence, a homogeneous continuum which admits of the sort of divisi-
bility needed to realize the infinitely small is nowhere to be found in
reality. The infinite divisibility of a continuum is an operation which
exists only in thought. It is merely an idea which is in fact impugned by
the results of our observations of nature and of our physical and chemi-
cal experiments.

The second place where we encounter the question of whether the in-
finite is found in nature is in the consideration of the universe as a whole.
Here we must consider the expanse of the universe to determine whether
it embraces anything infinitely large. But here again modern science, in
particular astronomy, has reopened the question and is endeavoring to
solve it, not by the defective means of metaphysical speculation, but by
reasons which are based on experiment and on the application of the laws
of nature. Here, too, serious objections against infinity have been found.
Euclidean geometry necessarily leads to the postulate that space is infin-
ite. Although euclidean geometry is indeed a consistent conceptual sys-
tem, it does not thereby follow that euclidean geometry actually holds in
reality. Whether or not real space is euclidean can be determined only
through observation and experiment. The attempt to prove the infinity
of space by pure speculation contains gross errors. From the fact that
outside a certain portion of space there is always more space, it follows
only that space is unbounded, not that it is infinite. Unboundedness and
finiteness are compatible. In so-called elliptical geometry, mathematical
investigation furnishes the natural model of a finite universe. Today the
abandonment of euclidean geometry is no longer merely a mathematical
or philosophical speculation but is suggested by considerations which
originally had nothing to do with the question of the finiteness of the uni-
verse. Einstein has shown that euclidean geometry must be abandoned.
On the basis of his gravitational theory, he deals with cosmological ques-
tions and shows that a finite universe is possible. Moreover, all the
results of astronomy are perfectly compatible with the postulate that the
universe is elliptical.

We have established that the universe is finite in two respects, i.e., as
regards the infinitely small and the infinitely large. But it may still be the
case that the infinite occupies a justified place in our thinking, that it
plays the role of an indispensable concept. Let us see what the situation is
in mathematics. Let us first interrogate that purest and simplest off-
spring of the human mind, viz., number theory. Consider one formula
out of the rich variety of elementary formulas of number theory, e.g.,
the formula
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Since we may substitute any integer whatsoever for n, for example n — 2
or /7 = 5, this formula implicitly contains infinitely many propositions.
This characteristic is essential to a formula. It enables the formula to rep-
resent the solution of an arithmetical problem and necessitates a special
idea for its proof. On the other hand, the individual numerical equations

can be verified simply by calculation and hence individually are of no
especial interest.

We encounter a completely different and quite unique conception of
the notion of infinity in the important and fruitful method of ideal ele-
ments. The method of ideal elements is used even in elementary plane
geometry. The points and straight lines of the plane originally are real,
actually existent objects. One of the axioms that hold for them is the
axiom of connection: one and only one straight line passes through two
points. It follows from this axiom that two straight lines intersect at most
at one point. There is no theorem that two straight lines always intersect
at some point, however, for the two straight lines might well be parallel.
Still we know that by introducing ideal elements, viz., infinitely long
lines and points at infinity, we can make the theorem that two straight
lines always intersect at one and only one point come out universally
true. These ideal "infinite" elements have the advantage of making the
system of connection laws as simple and perspicuous as possible. More-
over, because of the symmetry between a point and a straight line, there
results the very fruitful principle of duality for geometry.

Another example of the use of ideal elements are the familiar complex-
imaginary magnitudes of algebra which serve to simplify theorems about
the existence and number of the roots of an equation.

Just as infinitely many straight lines, viz., those parallel to each other,
are used to define an ideal point in geometry, so certain systems of infi-
nitely many numbers are used to define an ideal number. This applica-
tion of the principle of ideal elements is the most ingenious of all. If we
apply this principle systematically throughout an algebra, we obtain
exactly the same simple and familiar laws of division which hold for the
familiar whole numbers 1, 2, 3, 4, We are already in the domain of
higher arithmetic.

We now come to the most aesthetic and delicately erected structure of
mathematics, viz., analysis. You already know that infinity plays the
leading role in analysis. In a certain sense, mathematical analysis is a
symphony of the infinite.
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The tremendous progress made in the infinitesimal calculus results
mainly from operating with mathematical systems of infinitely many ele-
ments. But, as it seemed very plausible to identify the infinite with the
"very large", there soon arose inconsistencies which were known in part
to the ancient sophists, viz., the so-called paradoxes of the infinitesimal
calculus. But the recognition that many theorems which hold for the
finite (for example, the part is smaller than the whole, the existence of
a minimum and a maximum, the interchangeability of the order of the
terms of a sum or a product) cannot be immediately and unrestrictedly
extended to the infinite, marked fundamental progress. I said at the
beginning of this paper that these questions have been completely clari-
fied, notably through Weierstrass's acuity. Today, analysis is not only in-
fallible within its domain but has become a practical instrument for using
the infinite.

But analysis alone does not provide us with the deepest insight into the
nature of the infinite. This insight is procured for us by a discipline which
comes closer to a general philosophical way of thinking and which was
designed to cast new light on the whole complex of questions about the
infinite. This discipline, created by George Cantor, is set theory. In this
paper, we are interested only in that unique and original part of set
theory which forms the central core of Cantor's doctrine, viz., the theory
of transfinite numbers. This theory is, I think, the finest product of
mathematical genius and one of the supreme achievements of purely
intellectual human activity. What, then, is this theory?

Someone who wished to characterize briefly the new conception of the
infinite which Cantor introduced might say that in analysis we deal with
the infinitely large and the infinitely small only as limiting concepts, as
something becoming, happening, i.e., with the potential infinite. But this
is not the true infinite. We meet the true infinite when we regard the
totality of numbers 1,2, 3 ,4 , . . . itself as a completed unity, or when we
regard the points of an interval as a totality of things which exists all at
once. This kind of infinity is known as actual infinity.

Frege and Dedekind, the two mathematicians most celebrated for their
work in the foundations of mathematics, independently of each other
used the actual infinite to provide a foundation for arithmetic which was
independent of both intuition and experience. This foundation was based
solely on pure logic and made use only of deductions that were purely
logical. Dedekind even went so far as not to take the notion of finite
number from intuition but to derive it logically by employing the concept
of an infinite set. But is was Cantor who systematically developed the
concept of the actual infinite. Consider the two examples of the infinite
already mentioned
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1. 1 ,2 ,3 ,4 , . . . .
2. The points of the interval 0 to 1 or, what comes to the same thing,

the totality of real numbers between 0 and 1.

It is quite natural to treat these examples from the point of view of their
size. But such a treatment reveals amazing results with which every
mathematician today is familiar. For when we consider the set of all
rational numbers, i.e., the fractions 1/2, 1/3, 2/3, 1/4,..., 3 /7 , . . . , we
notice that - from the sole standpoint of its size - this set is no larger than
the set of integers. Hence we say that the rational numbers can be
counted in the usual way; i.e., that they are enumerable. The same holds
for the set of all roots of numbers, indeed even for the set of all algebraic
numbers. The second example is analogous to the first. Surprisingly
enough, the set of all the points of a square or cube is no larger than the
set of points of the interval 0 to 1. Similarly for the set of all continuous
functions. On learning these facts for the first time, you might think that
from the point of view of size there is only one unique infinite. No,
indeed! The sets in examples (1) and (2) are not, as we say, "equivalent".
Rather, the set (2) cannot be enumerated, for it is larger than the set (1).
We meet what is new and characteristic in Cantor's theory at this point.
The points of an interval cannot be counted in the usual way, i.e., by
counting 1,2, 3, But, since we admit the actual infinite, we are not
obliged to stop here. When we have counted 1,2, 3 , . . . , we can regard
the objects thus enumerated as an infinite set existing all at once in a par-
ticular order. If, following Cantor, we call the type of this order co, then
counting continues naturally with co + 1 , co + 2 , . . . up to co + co or co • 2, and
then again

and further

co-2, co-3, c o - 4 , . . . , co-co (o r co2), co2

so that we finally get this table:

1 , 2 , 3 , . . .

co, co + 1 , co + 2 , . . .

c o - 2 , ( c o - 2 ) + l , ( c o - 2 ) + 2 , . . .

c o - 3 , ( c o - 3 ) + l , ( c o - 3 ) + 2 , . . .

co2 ,co2 + l , . . .

co2 + co, co2 + co-2,co2 + c o - 3 , . .

c o 2 . 2 , ( c o 2 . 2 ) + l , . . .
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a,4,

These are Cantor's first transfinite numbers, or, as he called them, the
numbers of the second number class. We arrive at them simply by ex-
tending counting beyond the ordinarily enumerably infinite, i.e., by a
natural and uniquely determined consistent continuation of ordinary
finite counting. As until now we counted only the first, second, third,. . .
member of a set, we not count also the coth, (co +1 )st , . . . , co^th member.

Given these developments one naturally wonders whether or not, by
using these transfinite numbers, one can really count those sets which
cannot be counted in the ordinary way.

On the basis of these concepts, Cantor developed the theory of trans-
finite numbers quite successfully and invented a full calculus for them.
Thus, thanks to the Herculean collaboration of Frege, Dedekind, and
Cantor, the infinite was made king and enjoyed a reign of great triumph.
In daring flight, the infinite had reached a dizzy pinnacle of success.

But reaction was not lacking. It took in fact a very dramatic form. It
set in perfectly analogously to the way reaction had set in against the
development of the infinitesimal calculus. In the joy of discovering new
and important results, mathematicians paid too little attention to the
validity of their deductive methods. For, simply as a result of employing
definitions and deductive methods which had become customary, contra-
dictions began gradually to appear. These contradictions, the so-called
paradoxes of set theory, though at first scattered, became progressively
more acute and more serious. In particular, a contradiction discovered
by Zermelo and Russell had a downright catastrophic effect when it be-
came known throughout the world of mathematics. Confronted by these
paradoxes, Dedekind and Frege completely abandoned their point of
view and retreated. Dedekind hesitated a long time before permitting a
new edition of his epoch-making treatise Was sind und was sollen die
Zahlen to be published. In an epilogue, Frege too had to acknowledge
that the direction of his book Grundgesetze der Arithmetik was wrong.
Cantor's doctrine, too, was attacked on all sides. So violent was this reac-
tion that even the most ordinary and fruitful concepts and the simplest
and most important deductive methods of mathematics were threatened
and their employment was on the verge of being declared illicit. The old
order had its defenders, of course. Their defensive tactics, however, were
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too fainthearted and they never formed a united front at the vital spots.
Too many different remedies for the paradoxes were offered, and the
methods proposed to clarify them were too variegated.

Admittedly, the present state of affairs where we run up against the
paradoxes is intolerable. Just think, the definitions and deductive methods
which everyone learns, teaches, and uses in mathematics, the paragon of
truth and certitude, lead to absurdities! If mathematical thinking is
defective, where are we to find truth and certitude?

There is, however, a completely satisfactory way of avoiding the para-
doxes without betraying our science. The desires and attitudes which help
us find this way and show us what direction to take are these:

1. Wherever there is any hope of salvage, we will carefully investigate
fruitful definitions and deductive methods. We will nurse them,
strengthen them, and make them useful. No one shall drive us out
of the paradise which Cantor has created for us.

2. We must establish throughout mathematics the same certitude for
our deductions as exists in ordinary elementary number theory,
which no one doubts and where contradictions and paradoxes
arise only through our own carelessness.

Obviously these goals can be attained only after we have fully eluci-
dated the nature of the infinite.

We have already seen that the infinite is nowhere to be found in reality,
no matter what experiences, observations, and knowledge are appealed
to. Can thought about things be so much different from things? Can
thinking processes be so unlike the actual processes of things? In short,
can thought be so far removed from reality? Rather is it not clear that,
when we think that we have encountered the infinite in some real sense,
we have merely been seduced into thinking so by the fact that we often
encounter extremely large and extremely small dimensions in reality?

Does material logical deduction somehow deceive us or leave us in the
lurch when we apply it to real things or events?1 No! Material logical de-
duction is indispensable. It deceives us only when we form arbitrary ab-
stract definitions, especially those which involve infinitely many objects.
In such cases we have illegitimately used material logical deduction; i.e.,
we have not paid sufficient attention to the preconditions necessary for
its valid use. In recognizing that there are such preconditions that must
be taken into account, we find ourselves in agreement with the philoso-

1 [Throughout this paper the German word 'inhaltlich' has been translated by the words
'material' or 'materially' which are reserved for that purpose and which are used to refer to
matter in the sense of the traditional distinction between matter or content and logical
form. - Tr.]
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phers, notably with Kant. Kant taught - and it is an integral part of his
doctrine - that mathematics treats a subject matter which is given inde-
pendently of logic. Mathematics, therefore, can never be grounded solely
on logic. Consequently, Frege's and Dedekind's attempts to so ground it
were doomed to failure.

As a further precondition for using logical deduction and carrying out
logical operations, something must be given in conception, viz., certain
extralogical concrete objects which are intuited as directly experienced
prior to all thinking. For logical deduction to be certain, we must be able
to see every aspect of these objects, and their properties, differences,
sequences, and contiguities must be given, together with the objects
themselves, as something which cannot be reduced to something else and
which requires no reduction. This is the basic philosophy which I find
necessary, not just for mathematics, but for all scientific thinking, under-
standing, and communicating. The subject matter of mathematics is, in
accordance with this theory, the concrete symbols themselves whose
structure is immediately clear and recognizable.

Consider the nature and methods of ordinary finitary number theory.
It can certainly be constructed from numerical structures through intui-
tive material considerations. But mathematics surely does not consist
solely of numerical equations and surely cannot be reduced to them alone.
Still one could argue that mathematics is an apparatus which, when ap-
plied to integers, always yields correct numerical equations. But in that
event we still need to investigate the structure of this apparatus thoroughly
enough to make sure that it in fact always yields correct equations. To
carry out such an investigation, we have available only the same concrete
material finitary methods as were used to derive numerical equations in
the construction of number theory. This scientific requirement can in
fact be met, i.e., it is possible to obtain in a purely intuitive and finitary
way - the way we attain the truths of number theory - the insights which
guarantee the validity of the mathematical apparatus.

Let us consider number theory more closely. In number theory we
have the numerical symbols

1,11,111,11111

where each numerical symbol is intuitively recognizable by the fact it
contains only l 's. These numerical symbols which are themselves our
subject matter have no significance in themselves. But we require in addi-
tion to these symbols, even in elementary number theory, other symbols
which have meaning and which serve to facilitate communication; for
example the symbol 2 is used as an abbreviation for the numerical sym-
bol 11, and the numerical symbol 3 as an abbreviation for the numerical
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symbol 111. Moreover, we use symbols like +, = , and > to communi-
cate statements. 2 + 3 = 3 + 2 is intended to communicate the fact that
2 + 3 and 3 + 2, when abbreviations are taken into account, are the self-
same numerical symbol, viz., the numerical symbol 11111. Similarly 3 >2
serves to communicate the fact that the symbol 3, i.e., I l l , is longer than
the symbol 2, i.e., 11; or, in other words, that the latter symbol is a
proper part of the former.

We also use the letters a, b, c for communication. Thus b>a com-
municates the fact that the numerical symbol b is longer than the numeri-
cal symbol a. From this point of view, a + b = b + a communicates only
the fact that the numerical symbol a + b is the same as b + a. The content
of this communication can also be proved through material deduction.
Indeed, this kind of intuitive material treatment can take us quite far.

But let me give you an example where this intuitive method is out-
stripped. The largest known prime number is (39 digits)

p = 170141183460469231 731 687 303 715 884105 727

By a well-known method due to Euclid we can give a proof, one which
remains entirely within our finitary framework, of the statement that
between p + 1 and p! + 1 there exists at least one new prime number. The
statement itself conforms perfectly to our finitary approach, for the ex-
pression 'there exists' serves only to abbreviate the expression: it is cer-
tain that p + 1 or p + 2 or p + 3 . . . or p!+l is a prime number. Further-
more, since it obviously comes down to the same thing to say: there exists
a prime number which is

1. >p, and at the same time is
2.

we are led to formulate a theorem which expresses only a part of what the
euclidean theorem expresses; viz., the theorem that there exists a prime
number >p. Although this theorem is a much weaker statement in terms
of content - it asserts only part of what the euclidean theorem asserts -
and although the passage from the euclidean theorem to this one seem
quite harmless, that passage nonetheless involves a leap into the trans-
finite when the partial statement is taken out of context and regarded as
an independent statement.

How can this be? Because we have an existential statement, 'there
exists'! True, we had a similar expression in the euclidean theorem, but
there the 'there exists' was, as I already mentioned, an abbreviation for:
either p + 1 or p + 2 or p + 3 . . . orp! + l is a prime number - just as when,
instead of saying 'either this piece of chalk or this piece or this piece...
or this piece is red' we say briefly 'there exists a red piece of chalk among
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these pieces'. A statement such as 'there exists' an object with a certain
property in a finite totality conforms perfectly to our finitary approach.
But a statement like 'either p 4-1 or p + 2 or p + 3 . . . or (ad infinitum)...
has a certain property' is itself an infinite logical product. Such an exten-
sion into the infinite is, unless further explanation and precautions are
forthcoming, no more permissible than the extension from finite to in-
finite products in calculus. Such extensions, accordingly, usually lapse
into meaninglessness.

From our finitary point of view, an existential statement of the form
'there exists a number with a certain property' has in general only the sig-
nificance of a partial statement; i.e., it is regarded as part of a more
determinate statement. The more precise formulation may, however, be
unnecessary for rnany purposes.

In analyzing an existential statement whose content cannot be ex-
pressed by a finite disjunction, we encounter the infinite. Similarly, by
negating a general statement, i.e., one which refers to arbitrary numeri-
cal symbols, we obtain a transfinite statement. For example, the state-
ment that if Q is a numerical symbol, then a +1 = 1 + a is universally true,
is from our finitary perspective incapable of negation. We will see this
better if we consider that this statement cannot be interpreted as a con-
junction of infinitely many numerical equations by means of 'and' but
only as a hypothetical judgment which asserts something for the case
when a numerical symbol is given.

From our finitary viewpoint, therefore, we cannot argue that an equa-
tion like the one just given, where an arbitrary numerical symbol occurs,
either holds for every symbol or is disproved by a counter example. Such
an argument, being an application of the law of excluded middle, rests
on the presupposition that the statement of the universal validity of such
an equation is capable of negation.

At any rate, we note the following: if we remain within the domain of
finitary statements, as indeed we must, we have as a rule very compli-
cated logical laws. Their complexity becomes unmanageable when the
expressions 'all' and 'there exists' are combined and when they occur in
expressions nested within other expressions. In short, the logical laws
which Aristotle taught and which men have used ever since they began to
think do not hold. We could, of course, develop logical laws which do
hold for the domain of finitary statements. But it would do us no good to
develop such a logic, for we do not want to give up the use of the simple
laws of Aristotelian logic. Furthermore, no one, though he speak with
the tongues of angels, could keep people from negating general state-
ments, or from forming partial judgments, or from using tertium non
datur. What, then, are we to do?
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Let us remember that we are mathematicians and that as mathema-
ticians we have often been in precarious situations from which we have
been rescued by the ingenious method of ideal elements. I showed you
some illustrious examples of the use of this method at the beginning of
this paper. Just as / = V—1 was introduced to preserve in simplest form
the laws of algebra (for example, the laws about the existence and num-
ber of roots of an equation); just as ideal factors were introduced to pre-
serve the simple laws of divisibility for algebraic whole numbers (for
example, a common ideal divisor for the numbers 2 and 1+V—5 was
introduced, though no such divisor really exists); similarly, to preserve
the simple formal rules of ordinary Aristotelian logic, we must supple-
ment the finitary statements with ideal statements. It is quite ironic that
the deductive methods which Kronecker so vehemently attacked are the
exact counterpart of what Kronecker himself admired so enthusiastically
in Kummer's work on number theory which Kronecker extolled as the
highest achievement of mathematics.

How do we obtain ideal statements? It is remarkable as well as a favor-
able and promising fact that to obtain ideal statements, we need only
continue in a natural and obvious fashion the development which the
theory of the foundations of mathematics has already undergone. Indeed,
we should realize that even elementary mathematics goes beyond the
standpoint of intuitive number theory. Intuitive, material number theory,
as we have been construing it, does not include the method of algebraic
computation with letters. Formulas were always used exclusively for
communication in intuitive number theory. The letters stood for numeri-
cal symbols and an equation communicated the fact that the two symbols
coincided. In algebra, on the other hand, we regard expressions contain-
ing letters as independent structures which formalize the material
theorems of number theory. In place of statements about numerical sym-
bols, we have formulas which are themselves the concrete objects of intu-
itive study. In place of number-theoretic material proof, we have the
derivation of a formula from another formula according to determinate
rules.

Hence, as we see even in algebra, a proliferation of finitary objects
takes place. Up to now the only objects were numerical symbols like
1,11, . . . , 11111. These alone were the objects of material treatment. But
mathematical practice goes further, even in algebra. Indeed, even when
from our finitary viewpoint a formula is valid with respect to what it sig-
nifies as, for example, the theorem that always

where a and b stand for particular numerical symbols, nevertheless we
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prefer not to use this form of communication but to replace it instead by
the formula

This latter formula is in no wise an immediate communication of some-
thing signified but is rather a certain formal structure whose relation to
the old finitary statements,

2 + 3 = 3 + 2,
5 + 7 = 7 + 5,

consists in the fact that, when a and b are replaced in the formula by the
numerical symbols 2, 3, 5, 7, the individual finitary statements are there-
by obtained, i.e., by a proof procedure, albeit a very simple one. We
therefore conclude that a, b, = , + , as well as the whole formula a + b =
b + a mean nothing in themselves, no more than the numerical symbols
meant anything. Still we can derive from that formula other formulas to
which we do ascribe meaning, viz., by interpreting them as communica-
tions of finitary statements. Generalizing this conclusion, we conceive
mathematics to be a stock of two kinds of formulas: first, those to which
the meaningful communications of finitary statements correspond; and,
secondly, other formulas which signify nothing and which are the ideal
structures of our theory.

Now what was our goal? In mathematics, on the one hand, we found
finitary statements which contained only numerical symbols, for example,

3>2 , 2 + 3 = 3 + 2, 2 = 3, 1*1

which from our finitary standpoint are immediately intuitable and under-
standable without recourse to anything else. These statements can be
negated, truly or falsely. One can apply Aristotelian logic unrestrictedly
to them without taking special precautions. The principle of non-contra-
diction holds for them; i.e., the negation of one of these statements and
the statement itself cannot both be true. Tertium non datur holds for
them; i.e., either a statement or its negation is true. To say that a state-
ment is false is equivalent to saying that its negation is true. On the other
hand, in addition to these elementary statements which present no prob-
lems, we also found more problematic finitary statements; e.g., we found
finitary statements that could not be split up into partial statements.
Finally, we introduced ideal statements in order that the ordinary laws of
logic would hold universally. But since these ideal statements, viz., the
formulas, do not mean anything insofar as they do not express finitary
statements, logical operations cannot be materially applied to them as
they can be to finitary statements. It is, therefore, necessary to formalize
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the logical operations and the mathematical proofs themselves. This
formalization necessitates translating logical relations into formulas.
Hence, in addition to mathematical symbols, we must also introduce
logical symbols such as

& , v , -* , ~ 2

(and) (or) (implies) (not)

and in addition to the mathematical variables a,b,c,... we must also
employ logical variables, viz., the propositional variables A,B, C,

How can this be done? Fortunately that same preestablished harmony
which we have so often observed operative in the history of the develop-
ment of science, the same preestablished harmony which aided Einstein
by giving him the general invariant calculus already fully developed for
his gravitational theory, comes also to our aid: we find the logical cal-
culus already worked out in advance. To be sure, the logical calculus was
originally developed from an altogether different point of view. The sym-
bols of the logical calculus originally were introduced only in order to
communicate. Still it is consistent with our finitary viewpoint to deny any
meaning to logical symbols, just as we denied meaning to mathematical
symbols, and to declare that the formulas of the logical calculus are ideal
statements which mean nothing in themselves. We possess in the logical
calculus a symbolic language which can transform mathematical state-
ments into formulas and express logical deduction by means of formal
procedures. In exact analogy to the transition from material number
theory to formal algebra, we now treat the signs and operation symbols
of the logical calculus in abstraction from their meaning. Thus we finally
obtain, instead of material mathematical knowledge which is communi-
cated in ordinary language, just a set of formulas containing mathemati-
cal and logical symbols which are generated successively, according to
determinate rules. Certain of the formulas correspond to mathematical
axioms. The rules whereby the formulas are derived from one another
correspond to material deduction. Material deduction is thus replaced by
a formal procedure governed by rules. The rigorous transition from a
naive to a formal treatment is effected, therefore, both for the axioms
(which, though originally viewed naively as basic truths, have been long
treated in modern axiomatics as mere relations between concepts) and
for the logical calculus (which originally was supposed to be merely a dif-
ferent language).

We will now explain briefly how mathematical proofs are formalized.

2[Although Hilbert's original paper used ' — ' a s the sign for negation, we have substi-
tuted ' - ' for greater conformity with the notation used in other papers in this collection.
- Eds.]
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I have already said that certain formulas which serve as building blocks
for the formal structure of mathematics are called "axioms." A mathe-
matical proof is a figure which as such must be accessible to our intui-
tion. It consists of deductions made according to the deduction schema

where each premise, i.e., the formulas <S and @ —• Z, either is an axiom,
or results from an axiom by substitution, or is the last formula of a pre-
vious deduction, or results from such a formula by substitution. A
formula is said to be provable if it is the last formula of a proof.

Our program itself guides the choice of axioms for our theory of proof.
Notwithstanding a certain amount of arbitrariness in the choice of
axioms, as in geometry certain groups of axioms are qualitatively distin-
guishable. Here are some examples taken from each of these groups:

I. Axioms for implication
(i) A-+(B-»A)

(addition of a hypothesis)
(ii) (B^>C)->i(A-*B)^>(A-+C))

(elimination of a statement)
II. Axioms for negation

(i) [A -> (B & ~B)} -» -A
(law of contradiction)

(ii) ^~A -+A
(law of double negation)

The axioms in groups I and II are simply the axioms of the proposi-
tional calculus.

III. Transfinite axioms
(i) (a)A(a)-*A(b)

(inference from the universal to the particular; Aristotelian
axiom);

(ii) ~(a)A(a)-*(la)~A(a)
(if a predicate does not apply universally, then there is a
counterexample);

(iii) ~(3a)A(a)->(a)~A(a)
(if there are no instances of a proposition, then the proposi-
tion is false for all a).

At this point we discover the very remarkable fact that these transfinite
axioms can be derived from a single axiom which contains the gist of the
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so-called axiom of choice, the most disputed axiom in the literature of
mathematics:

(i') A(a)-*A(eA)

where e is the transfinite, logical choice-function.
Then the following specifically mathematical axioms are added to

those just given:

IV. Axioms for identity
(i) a = a
(ii) a = b-*{A(a)-+A(b))9

and finally

V. Axioms for number
(i) tf + 1^0

(ii) The axiom of complete induction.

Thus we are now in a position to carry out our theory of proof and to
construct the system of provable formulas, i.e., mathematics. But in our
general joy over this achievement and in our particular joy over finding
that indispensable tool, the logical calculus, already developed without
any effort on our part, we must not forget the essential condition of our
work. There is just one condition, albeit an absolutely necessary one,
connected with the method of ideal elements. That condition is a proof
of consistency, for the extension of a domain by the addition of ideal ele-
ments is legitimate only if the extension does not cause contradictions to
appear in the old, narrower domain, or, in other words, only if the rela-
tions that obtain among the old structures when the ideal structures are
deleted are always valid in the old domain.

The problem of consistency is easily handled in the present circum-
stances. It reduces obviously to proving that from our axioms and
according to the rules we laid down we cannot get 'l&V as the last
formula of a proof, or, in other words, that *1;*P is not a provable
formula. This task belongs just as much to the domain of intuitive treat-
ment as does, for example, the task of finding a proof of the irrationality
of V2 in materially constructed number theory - i.e., a proof that it is
impossible to find two numerical symbols a and b which stand in the
relation a2 = 2b2, or in other words, that one cannot produce two numer-
ical symbols with a certain property. Similarly, it is incumbent on us to
show that one cannot produce a certain kind of proof. A formalized
proof, like a numerical symbol, is a concrete and visible object. We can
describe it completely. Further, the requisite property of the last formula;
viz., that it read '15*1', is a concretely ascertainable property of the
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proof. And since we can, as a matter of fact, prove that it is impossible to
get a proof which has that formula as its last formula, we thereby justify
our introduction of ideal statement.

It is also a pleasant surprise to discover that, at the very same time, we
have resolved a problem which has plagued mathematicians for a long
time, viz., the problem of proving the consistency of the axioms of arith-
metic. For, wherever the axiomatic method is used, the problem of prov-
ing consistency arises. Surely in choosing, understanding, and using rules
and axioms we do not want to rely solely on blind faith. In geometry and
physical theory, proof of consistency is effected by reducing their consis-
tency to that of the axioms of arithmetic. But obviously we cannot use
this method to prove the consistency of arithmetic itself. Since our theory
of proof, based on the method of ideal elements, enables us to take this
last important step, it forms the necessary keystone of the doctrinal arch
of axiomatics. What we have twice experienced, once with the paradoxes
of the infinitesimal calculus and once with the paradoxes of set theory,
will not be experienced a third time, nor ever again.

The theory of proof which we have here sketched not only is capable
of providing a solid basis for the foundations of mathematics but also,
I believe, supplies a general method for treatment fundamental mathe-
matical questions which mathematicians heretofore have been unable to
handle.

In a sense, mathematics has become a court of arbitration, a supreme
tribunal to decide fundamental questions - on a concrete basis on which
everyone can agree and where every statement can be controlled.

The assertions of the new so-called "intuitionism" - modest though
they may be - must in my opinion first receive their certificate of validity
from this tribunal.

An example of the kind of fundamental questions which can be so
handled is the thesis that every mathematical problem is solvable. We are
all convinced that it really is so. In fact one of the principal attractions of
tackling a mathematical problem is that we always hear this cry within
us: There is the problem, find the answer; you can find it just by think-
ing, for there is no ignorabimus in mathematics. Now my theory of proof
cannot supply a general method for solving every mathematical problem
- there just is no such method. Still the proof (that the assumption that
every mathematical problem is solvable is a consistent assumption) falls
completely within the scope of our theory.

I will now play my last trump. The acid test of a new theory is its abil-
ity to solve problems which, though known for a long time, the theory
was not expressly designed to solve. The maxim "By their fruits ye shall
know them" applies also to theories. When Cantor discovered his first
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transfinite numbers, the so-called numbers of the second number class,
the question immediately arose, as I already mentioned, whether this
transfinite method of counting enables one to count sets known from
elsewhere which are not countable in the ordinary sense. The points of an
interval figured prominently as such a set. This question - whether the
points of an interval, i.e., the real numbers, can be counted by means of
the numbers of the table given previously - is the famous continuum
problem which Cantor posed but failed to solve. Though some mathema-
ticians have thought that they could dispose of this problem by denying
its existence, the following remarks show how wrong they were: The con-
tinuum problem is set off from other problems by its uniqueness and
inner beauty. Further, it offers the advantage over other problems of
combining these two qualities: on the one hand, new methods are re-
quired for its solution since the old methods fail to solve it; on the other
hand, its solution itself is of the greatest importance because of the
results to be obtained.

The theory which I have developed provides a solution of the continuum
problem. The proof that every mathematical problem is solvable consti-
tutes the first and most important step toward its solution 3

In summary, let us return to our main theme and draw some conclusions
from all our thinking about the infinite. Our principal result is that the
infinite is nowhere to be found in reality. It neither exists in nature nor
provides a legitimate basis for rational thought - a remarkable harmony
between being and thought. In contrast to the earlier efforts of Frege and
Dedekind, we are convinced that certain intuitive concepts and insights
are necessary conditions of scientific knowledge, and logic alone is not
sufficient. Operating with the infinite can be made certain only by the
finitary.

The role that remains for the infinite to play is solely that of an idea -
if one means by an idea, in Kant's terminology, a concept of reason
which transcends all experience and which completes the concrete as a
totality - that of an idea which we may unhesitatingly trust within the
framework erected by our theory.

Lastly, I wish to thank P. Bernays for his intelligent collaboration and
valuable help, both technical and editorial, especially with the proof of
the continuum theorem.

3[At this point, Hilbert sketched an attempted solution of the continuum problem. The
attempt was, although not devoid of interest, never carried out. We omit it here. - Eds.]
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